
Video and Image Processing Blockset™ 3
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Video and Image Processing Blockset™ Reference

© COPYRIGHT 2004 –2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2007 Online only New for Version 2.3 (Release 2007a)
September 2007 Online only Revised for Version 2.4 (Release 2007b)
March 2008 Online only Revised for Version 2.5 (Release 2008a)
October 2008 Online only Revised for Version 2.6 (Release 2008b)
March 2009 Online only Revised for Version 2.7 (Release 2009a)
September 2009 Online only Revised for Version 2.8 (Release 2009b)
March 2010 Online only Revised for Version 3.0 (Release 2010a)

Contents

Block Reference

1
Analysis & Enhancement . 1-2

Conversions . 1-2

Filtering . 1-3

Geometric Transformations . 1-3

Morphological Operations . 1-4

Sinks . 1-4

Sources . 1-5

Statistics . 1-5

Text & Graphics . 1-7

Transforms . 1-7

Utilities . 1-8

v

Blocks — Alphabetical List

2

System Object Reference

3
Analysis & Enhancement . 3-2

Conversions . 3-2

Filtering . 3-3

Geometric Transformations . 3-3

Morphological Operations . 3-4

Sinks . 3-4

Sources . 3-5

Statistics . 3-5

Text & Graphics . 3-6

Transforms . 3-6

Utilities . 3-7

vi Contents

Alphabetical List

4

Function Reference

5
Video and Image Processing Functions 5-2

vii

viii Contents

1

Block Reference

Analysis & Enhancement (p. 1-2) Analyze or enhance images or video

Conversions (p. 1-2) Perform conversion operations such
as color space conversion

Filtering (p. 1-3) Filter images or video

Geometric Transformations (p. 1-3) Manipulate size, shape, and
orientation of images or video

Morphological Operations (p. 1-4) Perform morphological operations
such as erosion and dilation

Sinks (p. 1-4) Export or display images or video

Sources (p. 1-5) Import images or video into Simulink

Statistics (p. 1-5) Perform statistical operations on
images or video

Text & Graphics (p. 1-7) Annotate images or video

Transforms (p. 1-7) Perform transform operations such
as 2-D FFT and 2-D DCT

Utilities (p. 1-8) Perform processing operations
such as image padding and block
processing

1 Block Reference

Analysis & Enhancement
Block Matching Estimate motion between images or

video frames

Contrast Adjustment Adjust image contrast by linearly
scaling pixel values

Corner Detection Calculate corner metric matrix and
find corners in images

Deinterlacing Remove motion artifacts by
deinterlacing input video signal

Edge Detection Find edges of objects in images using
Sobel, Prewitt, Roberts, or Canny
method

Histogram Equalization Enhance contrast of images using
histogram equalization

Median Filter Perform 2-D median filtering

Optical Flow Estimate object velocities

Template Matching Locate a template in an image

Trace Boundaries Trace object boundaries in binary
images

Conversions

Autothreshold Convert intensity image to binary
image

Chroma Resampling Downsample or upsample
chrominance components of images

Color Space Conversion Convert color information between
color spaces

Demosaic Demosaic Bayer’s format images

1-2

Filtering

Gamma Correction Apply or remove gamma correction
from images or video streams

Image Complement Compute complement of pixel values
in binary, intensity, or RGB images

Image Data Type Conversion Convert and scale input image to
specified output data type

Filtering

2-D Convolution Compute 2-D discrete convolution of
two input matrices

2-D FIR Filter Perform 2-D FIR filtering on input
matrix

Kalman Filter Predict or estimate states of dynamic
systems

Median Filter Perform 2-D median filtering

Geometric Transformations

Apply Geometric Transformation Apply projective or affine
transformation to an image

Estimate Geometric Transformation Estimate geometric transformation
from matching point pairs

Projective Transformation Transform quadrilateral into
another quadrilateral

Resize Enlarge or shrink image sizes

Rotate Rotate image by specified angle

1-3

1 Block Reference

Shear Shift rows or columns of image by
linearly varying offset

Translate Translate image in 2-D plane using
displacement vector

Morphological Operations
Bottom-hat Perform bottom-hat filtering on

intensity or binary images

Closing Perform morphological closing on
binary or intensity images

Dilation Find local maxima in binary or
intensity images

Erosion Find local minima in binary or
intensity images

Label Label connected components in
binary images

Opening Perform morphological opening on
binary or intensity images

Top-hat Perform top-hat filtering on intensity
or binary images

Sinks
Frame Rate Display Calculate average update rate of

input signal

To Multimedia File Write video frames and audio
samples to multimedia file

To Video Display Display video data

1-4

Sources

Video To Workspace Export video signal to MATLAB®

workspace

Video Viewer Display binary, intensity, or RGB
images or video streams

Write AVI File (Obsolete) Write video frames to uncompressed
AVI file

Write Binary File Write binary video data to files

Sources
From Multimedia File Read video frames and audio samples

from compressed multimedia file

Image From File Import image from image file

Image From Workspace Import image from MATLAB
workspace

Read Binary File Read binary video data from files

Video From Workspace Import video signal from MATLAB
workspace

Statistics

2-D Autocorrelation Compute 2-D autocorrelation of
input matrix

2-D Correlation Compute 2-D cross-correlation of two
input matrices

2-D Histogram (Obsolete) Generate histogram of each input
matrix

2-D Mean (Obsolete) Find mean value of each input
matrix

1-5

1 Block Reference

2-D Median (Obsolete) Find median value of each input
matrix

2-D Standard Deviation (Obsolete) Find standard deviation of each
input matrix

2-D Variance (Obsolete) Compute variance of each input
matrix

Blob Analysis Compute statistics for labeled
regions

Find Local Maxima Find local maxima in matrices

Histogram Generate histogram of each input
matrix

Maximum Find maximum values in input or
sequence of inputs

Mean Find mean value of each input
matrix

Median Find median value of each input
matrix

Minimum Find minimum values in input or
sequence of inputs

PSNR Compute peak signal-to-noise ratio
(PSNR) between images

Standard Deviation Find standard deviation of each
input matrix

Variance Compute variance of input or
sequence of inputs

1-6

Text & Graphics

Text & Graphics

Compositing Combine pixel values of two images,
overlay one image over another, or
highlight selected pixels

Draw Markers Draw markers by embedding
predefined shapes on output image

Draw Shapes Draw rectangles, lines, polygons, or
circles on images

Insert Text Draw text on image or video stream.

Transforms

2-D DCT Compute 2-D discrete cosine
transform (DCT)

2-D FFT Compute 2-D FFT of input

2-D IDCT Compute 2-D inverse discrete cosine
transform (IDCT)

2-D IFFT Compute 2-D IFFT of input

Gaussian Pyramid Perform Gaussian pyramid
decomposition

Hough Lines Find Cartesian coordinates of lines
described by rho and theta pairs

Hough Transform Find lines in images

1-7

1 Block Reference

Utilities
Block Processing Repeat user-specified operation on

submatrices of input matrix

Image Pad Pad signal along its rows, columns,
or both

Variable Selector Specify subset of rows or columns
from input

1-8

2

Blocks — Alphabetical List

2-D Autocorrelation

Purpose Compute 2-D autocorrelation of input matrix

Library Statistics

Description The 2-D Autocorrelation block computes the two-dimensional
autocorrelation of the input matrix. Assume that input matrix A has
dimensions (Ma, Na). The equation for the two-dimensional discrete
autocorrelation is

C i j A m n conj A m i n j
n

Na

m

Ma
(,) (,) ((,))

()()
= ⋅ + +

=

−

=

−

∑∑
0

1

0

1

where 0 2 1≤ < −i Ma and 0 2 1≤ < −j Na .

The output of this block has dimensions (,)2 1 2 1Ma Na− − .

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of
intensity values or a
scalar, vector, or matrix
that represents one plane
of the RGB video stream

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Yes

Output Autocorrelation of the
input matrix

Same as Input port Yes

If the data type of the input is floating point, the output of the block has
the same data type.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D
Autocorrelation block for fixed-point signals.

2-2

2-D Autocorrelation

You can set the product output, accumulator, and output data types in
the block mask as discussed in “Dialog Box” on page 2-4.

The output of the multiplier is in the product output data type if at
least one of the inputs to the multiplier is real. If both of the inputs
to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” in the Signal Processing
Blockset™ documentation.

2-3

2-D Autocorrelation

Dialog
Box

TheMain pane of the 2-D Autocorrelation dialog box appears as shown
in the following figure.

The Data Types pane of the 2-D Autocorrelation dialog box appears
as shown in the following figure.

2-4

2-D Autocorrelation

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how to designate the product output
word and fraction lengths. Refer to “Fixed-Point Data Types” on
page 2-2 and “Multiplication Data Types” in the Signal Processing

2-5

2-D Autocorrelation

Blockset documentation for illustrations depicting the use of the
product output data type in this block:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset™
software is 0.

Accumulator
Use this parameter to specify how to designate the accumulator
word and fraction lengths. Refer to “Fixed-Point Data Types” on
page 2-2 and “Multiplication Data Types” in the Signal Processing
Blockset documentation for illustrations depicting the use of the
accumulator data type in this block. The accumulator data type is
only used when both inputs to the multiplier are complex.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

Output
Choose how to specify the output word length and fraction length.

• When you select Same as input, these characteristics match
those of the input to the block.

2-6

2-D Autocorrelation

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset software
is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink® documentation.

See Also 2-D Correlation Video and Image Processing
Blockset software

Histogram Video and Image Processing
Blockset software

Mean Video and Image Processing
Blockset software

Median Video and Image Processing
Blockset software

Standard Deviation Video and Image Processing
Blockset software

Variance Video and Image Processing
Blockset software

Maximum Signal Processing Blockset software

Minimum Signal Processing Blockset software

2-7

2-D Convolution

Purpose Compute 2-D discrete convolution of two input matrices

Library Filtering

vipfilter

Description

The 2-D Convolution block computes the two-dimensional convolution
of two input matrices. Assume that matrix A has dimensions (Ma, Na)
and matrix B has dimensions (Mb, Nb). When the block calculates the
full output size, the equation for the 2-D discrete convolution is

C i j A m n B i m j n
n

Na

m

Ma
(,) (,) * (,)

()()
= − −

=

−

=

−

∑∑
0

1

0

1

where 0 1≤ < + −i Ma Mb and 0 1≤ < + −j Na Nb .

Port Input/Output Supported Data Types
Complex
Values
Supported

I1 Matrix of intensity
values or a matrix that
represents one plane of
the RGB video stream

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Yes

I2 Matrix of intensity
values or a matrix that

Same as I1 port Yes

2-8

2-D Convolution

Port Input/Output Supported Data Types
Complex
Values
Supported

represents one plane of
the RGB video stream

Output Convolution of the input
matrices

Same as I1 port Yes

If the data type of the input is floating point, the output of the block has
the same data type.

The dimensions of the output are dictated by the Output size
parameter. Assume that the input at port I1 has dimensions (Ma, Na)
and the input at port I2 has dimensions (Mb, Nb). If, for the Output
size parameter, you choose Full, the output is the full two-dimensional
convolution with dimensions (Ma+Mb-1, Na+Nb-1). If, for the Output
size parameter, you choose Same as input port I1, the output is the
central part of the convolution with the same dimensions as the input at
port I1. If, for the Output size parameter, you choose Valid, the output
is only those parts of the convolution that are computed without the
zero-padded edges of any input. This output has dimensions (Ma-Mb+1,
Na-Nb+1). However, if all(size(I1)<size(I2)), the block errors out.

If you select the Output normalized convolution
check box, the block’s output is divided by
sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))), where I1p is the
portion of the I1 matrix that aligns with the I2 matrix. See “Example 2”
on page 2-12 for more information.

Note When you select the Output normalized convolution check
box, the block input cannot be fixed point.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D Convolution
block for fixed-point signals.

2-9

2-D Convolution

You can set the product output, accumulator, and output data types in
the block mask as discussed in “Dialog Box” on page 2-15.

The output of the multiplier is in the product output data type if at
least one of the inputs to the multiplier is real. If both of the inputs
to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” in the Signal Processing
Blockset documentation.

Examples Example 1

Suppose I1, the first input matrix, has dimensions (4,3) and I2, the
second input matrix, has dimensions (2,2). If, for the Output size
parameter, you choose Full, the block uses the following equations to
determine the number of rows and columns of the output matrix:

The resulting matrix is

2-10

2-D Convolution

If, for the Output size parameter, you choose Same as input port

I1, the output is the central part of Cfull with the same dimensions as
the input at port I1, (4,3). However, since a 4-by-3 matrix cannot be

extracted from the exact center of Cfull , the block leaves more rows and
columns on the top and left side of the Cfull matrix and outputs:

If, for the Output size parameter, you choose Valid, the block uses the
following equations to determine the number of rows and columns of
the output matrix:

2-11

2-D Convolution

In this case, it is always possible to extract the exact center of Cfull .
Therefore, the block outputs

Example 2

In convolution, the value of an output element is computed as a
weighted sum of neighboring elements.

For example, suppose the first input matrix represents an image and
is defined as

I1 = [17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9]

The second input matrix also represents an image and is defined as

I2 = [8 1 6
3 5 7
4 9 2]

The following figure shows how to compute the (1,1) output element
(zero-based indexing) using these steps:

2-12

2-D Convolution

1 Rotate the second input matrix, I2, 180 degrees about its center
element.

2 Slide the center element of I2 so that it lies on top of the (0,0) element
of I1.

3 Multiply each element of the rotated I2 matrix by the element of
I1 underneath.

4 Sum the individual products from step 3.

Hence the (1,1) output element is

0 2 0 9 0 4 0 7 17 5 24 3 0 6 23 1 5 8 220⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = .

2-13

2-D Convolution

�

�

�

�

�

�

�

	

��
������������������������

�
��������������������

�
�����������������
�
�����������

����������
� �
���

�� �� � � �

��

�� �

�	

�!

���

��

�

�
 �

����

	�

���!

��

��

Computing the (1,1) Output of Convolution

The normalized convolution of the (1,1) output element is
220/sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))) = 0.3459, where
I1p = [0 0 0; 0 17 24; 0 23 5].

2-14

2-D Convolution

Dialog
Box

The Main pane of the 2-D Convolution dialog box appears as shown in
the following figure.

2-15

2-D Convolution

Output size
This parameter controls the size of the output scalar, vector, or
matrix produced as a result of the convolution between the two
inputs. If you choose Full, the output has dimensions (Ma+Mb-1,
Na+Nb-1). If you choose Same as input port I1, the output has
the same dimensions as the input at port I1. If you choose Valid,
output has dimensions (Ma-Mb+1, Na-Nb+1).

Output normalized convolution
If you select this check box, the block’s output is normalized.

The Data Types pane of the 2-D Convolution dialog box appears as
shown in the following figure.

2-16

2-D Convolution

2-17

2-D Convolution

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how to designate the product output
word and fraction lengths. Refer to “Fixed-Point Data Types” on
page 2-9 and “Multiplication Data Types” in the Signal Processing
Blockset documentation for illustrations depicting the use of the
product output data type in this block:

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in theVideo and Image Processing Blockset
software is 0.

The Product Output inherits its sign according to the inputs. If
either or both input I1 and I2 are signed, the Product Output
will be signed. Otherwise, the Product Output is unsigned. The
following table shows all cases.

Sign of Input I1 Sign of Input I2 Sign of Product
Output

unsigned unsigned unsigned

unsigned signed signed

signed unsigned signed

signed signed signed

2-18

2-D Convolution

Accumulator
Use this parameter to specify how to designate the accumulator
word and fraction lengths. Refer to “Fixed-Point Data Types” on
page 2-9 and “Multiplication Data Types” in the Signal Processing
Blockset documentation for illustrations depicting the use of the
accumulator data type in this block. The accumulator data type is
only used when both inputs to the multiplier are complex:

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset software
is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more

2-19

2-D Convolution

information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also 2-D FIR Filter Video and Image Processing Blockset
software

2-20

2-D Correlation

Purpose Compute 2-D cross-correlation of two input matrices

Library Statistics

vipstatistics

Description The 2-D Correlation block computes the two-dimensional
cross-correlation of two input matrices. Assume that matrix A
has dimensions (Ma, Na) and matrix B has dimensions (Mb, Nb).
When the block calculates the full output size, the equation for the
two-dimensional discrete cross-correlation is

C i j A m n conj B m i n j
n

Na

m

Ma
(,) (,) ((,))

()()
= ⋅ + +

=

−

=

−

∑∑
0

1

0

1

where 0 1≤ < + −i Ma Mb and 0 1≤ < + −j Na Nb .

Port Input/Output Supported Data Types
Complex
Values
Supported

I1 Vector or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Yes

I2 Scalar, vector, or matrix
of intensity values or a
scalar, vector, or matrix
that represents one plane
of the RGB video stream

Same as I1 port Yes

Output Convolution of the input
matrices

Same as I1 port Yes

2-21

2-D Correlation

If the data type of the input is floating point, the output of the block is
the same data type.

The dimensions of the output are dictated by the Output size
parameter and the sizes of the inputs at ports I1 and I2. For example,
assume that the input at port I1 has dimensions (Ma, Na) and the input
at port I2 has dimensions (Mb, Nb). If, for the Output size parameter,
you choose Full, the output is the full two-dimensional cross-correlation
with dimensions (Ma+Mb-1, Na+Nb-1). If, for the Output size
parameter, you choose Same as input port I1, the output is the
central part of the cross-correlation with the same dimensions as the
input at port I1. If, for the Output size parameter, you choose Valid,
the output is only those parts of the cross-correlation that are computed
without the zero-padded edges of any input. This output has dimensions
(Ma-Mb+1, Na-Nb+1). However, if all(size(I1)<size(I2)), the block
errors out.

If you select the Normalized output check box, the block’s output
is divided by sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))), where
I1p is the portion of the I1 matrix that aligns with the I2 matrix. See
“Example 2” on page 2-25 for more information.

Note When you select the Normalized output check box, the block
input cannot be fixed point.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D Correlation
block for fixed-point signals.

2-22

2-D Correlation

You can set the product output, accumulator, and output data types in
the block mask as discussed in “Dialog Box” on page 2-29.

The output of the multiplier is in the product output data type if at
least one of the inputs to the multiplier is real. If both of the inputs
to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” in the Signal Processing
Blockset documentation.

Examples Example 1

Suppose I1, the first input matrix, has dimensions (4,3). I2, the second
input matrix, has dimensions (2,2). If, for the Output size parameter,
you choose Full, the block uses the following equations to determine
the number of rows and columns of the output matrix:

The resulting matrix is

2-23

2-D Correlation

If, for the Output size parameter, you choose Same as input port

I1, the output is the central part of Cfull with the same dimensions as
the input at port I1, (4,3). However, since a 4-by-3 matrix cannot be

extracted from the exact center of Cfull , the block leaves more rows and
columns on the top and left side of the Cfull matrix and outputs:

If, for the Output size parameter, you choose Valid, the block uses the
following equations to determine the number of rows and columns of
the output matrix:

2-24

2-D Correlation

In this case, it is always possible to extract the exact center of Cfull .
Therefore, the block outputs

Example 2

In cross-correlation, the value of an output element is computed as a
weighted sum of neighboring elements.

For example, suppose the first input matrix represents an image and
is defined as

I1 = [17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9]

The second input matrix also represents an image and is defined as

I2 = [8 1 6
3 5 7
4 9 2]

The following figure shows how to compute the (2,4) output element
(zero-based indexing) using these steps:

1 Slide the center element of I2 so that lies on top of the (1,3) element
of I1.

2-25

2-D Correlation

2 Multiply each weight in I2 by the element of I1 underneath.

3 Sum the individual products from step 2.

The (2,4) output element from the cross-correlation is

1 8 8 1 15 6 7 3 14 5 16 7 13 4 20 9 22 2 585⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = .

2-26

2-D Correlation

	

�

�

�

�

�

�

�

��
����������������

�
��������������������

�
�����������������
�
�����������

����������
� �
���

�� �� � � �

��

�� �

�	

�!

���

��

�

�
 �

����

	�

���!

��

��

Computing the (2,4) Output of Cross-Correlation

2-27

2-D Correlation

The normalized cross-correlation of the (2,4) output element is
585/sqrt(sum(dot(I1p,I1p))*sum(dot(I2,I2))) = 0.8070, where
I1p = [1 8 15; 7 14 16; 13 20 22].

2-28

2-D Correlation

Dialog
Box

The Main pane of the 2-D Correlation dialog box appears as shown in
the following figure.

2-29

2-D Correlation

Output size
This parameter controls the size of the output scalar, vector, or
matrix produced as a result of the cross-correlation between
the two inputs. If you choose Full, the output has dimensions
(Ma+Mb-1, Na+Nb-1). If you choose Same as input port I1, the
output has the same dimensions as the input at port I1. If you
choose Valid, output has dimensions (Ma-Mb+1, Na-Nb+1).

Normalized output
If you select this check box, the block’s output is normalized.

The Data Types pane of the 2-D Correlation dialog box appears as
shown in the following figure.

2-30

2-D Correlation

2-31

2-D Correlation

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how to designate the product output
word and fraction lengths. Refer to “Fixed-Point Data Types”
on page 2-22 and “Multiplication Data Types” in the Signal
Processing Blockset documentation for illustrations depicting the
use of the product output data type in this block:

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

The Product Output inherits its sign according to the inputs. If
either or both input I1 and I2 are signed, the Product Output
will be signed. Otherwise, the Product Output is unsigned. The
table below show all cases.

Sign of Input I1 Sign of Input I2 Sign of Product
Output

unsigned unsigned unsigned

unsigned signed signed

signed unsigned signed

signed signed signed

2-32

2-D Correlation

Accumulator
Use this parameter to specify how to designate the accumulator
word and fraction lengths. Refer to “Fixed-Point Data Types”
on page 2-22 and “Multiplication Data Types” in the Signal
Processing Blockset documentation for illustrations depicting the
use of the accumulator data type in this block. The accumulator
data type is only used when both inputs to the multiplier are
complex:

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset software
is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more

2-33

2-D Correlation

information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also 2-D Autocorrelation Video and Image Processing Blockset
software

Histogram Video and Image Processing Blockset
software

Mean Video and Image Processing Blockset
software

Median Video and Image Processing Blockset
software

Standard Deviation Video and Image Processing Blockset
software

Variance Video and Image Processing Blockset
software

Maximum Signal Processing Blockset software

Minimum Signal Processing Blockset software

2-34

2-D DCT

Purpose Compute 2-D discrete cosine transform (DCT)

Library Transforms

viptransforms

Description The 2-D DCT block calculates the two-dimensional discrete cosine
transform of the input signal. The equation for the two-dimensional
DCT is

F m n
MN

C m C n f x y
x m

M
y

y

N

x

M
(,) () () (,) cos

()
cos

(= + +

=

−

=

−

∑∑2 2 1
2

2

0

1

0

1 π 11
2

)n
N

π

where C m C n(), () /= 1 2 for m n, = 0 and C m C n(), () = 1 otherwise.

The number of rows and columns of the input signal must be powers
of two. The output of this block has dimensions the same dimensions
as the input.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

Output 2-D DCT of the input Same as Input port No

If the data type of the input signal is floating point, the output of the
block is the same data type.

2-35

2-D DCT

Use the Sine and cosine computation parameter to specify how the
block computes the sine and cosine terms in the DCT algorithm. If
you select Trigonometric fcn, the block computes the sine and cosine
values during the simulation. If you select Table lookup, the block
computes and stores the trigonometric values before the simulation
starts. In this case, the block requires extra memory.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D DCT block
for fixed-point signals. Inputs are first cast to the output data type and
stored in the output buffer. Each butterfly stage processes signals in
the accumulator data type, with the final output of the butterfly being
cast back into the output data type.

2-36

2-D DCT

2-37

2-D DCT

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both inputs
to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” in the Signal Processing
Blockset documentation. You can set the sine table, product output,
accumulator, and output data types in the block mask as discussed
in the next section.

2-38

2-D DCT

Dialog
Box

The Main pane of the 2-D DCT dialog box appears as shown in the
following figure.

Sine and cosine computation
Specify how the block computes the sine and cosine terms in the
DCT algorithm. If you select Trigonometric fcn, the block
computes the sine and cosine values during the simulation. If
you select Table lookup, the block computes and stores the

2-39

2-D DCT

trigonometric values before the simulation starts. In this case, the
block requires extra memory.

The Data Types pane of the 2-D DCT dialog box appears as shown in
the following figure.

2-40

2-D DCT

Rounding mode
Select the rounding mode for fixed-point operations. The sine table
values do not obey this parameter; they always round to Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The sine
table values do not obey this parameter; instead, they are always
saturated.

Sine table data type
Choose how you specify the word length of the values of the sine
table. The fraction length of the sine table values always equals
the word length minus one. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same
word length as input

• An expression that evaluates to a valid data type, for example,
fixdt(1,16)

The sine table values do not obey the Rounding mode and
Overflow mode parameters; instead, they are always saturated
and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data
Types” on page 2-36 and “Multiplication Data Types” for
illustrations depicting the use of the product output data type in
this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Product output data type parameter.

2-41

2-D DCT

See “Using the Data Type Assistant” in Simulink User’s Guide for
more information.

Accumulator data type
Specify the accumulator data type. See “Fixed-Point Data Types”
on page 2-36 for illustrations depicting the use of the accumulator
data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Accumulator data type parameter.

See “Using the Data Type Assistant” in Simulink User’s Guide for
more information.

Output data type
Specify the output data type. See “Fixed-Point Data Types” on
page 2-36 for illustrations depicting the use of the output data
type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the
block calculates the output word length and fraction length
automatically. The internal rule first calculates an ideal output
word length and fraction length using the following equations:

WL WL floor DCT lengthideal output input= + − +(log ())2 1 1

FL FLideal output input=

2-42

2-D DCT

Using these ideal results, the internal rule then selects word
lengths and fraction lengths that are appropriate for your
hardware. For more information, see “Inherit via Internal
Rule”.

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Simulink User’s
Guide for more information.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the
autoscaling tool in the Fixed-Point Tool. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the
Simulink documentation.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] Chen, W.H, C.H. Smith, and S.C. Fralick, “A fast computational
algorithm for the discrete cosine transform,” IEEE Trans. Commun.,
vol. COM-25, pp. 1004-1009. 1977.

[2] Wang, Z. “Fast algorithms for the discrete W transform and for
the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-32, pp. 803-816, Aug. 1984.

2-43

2-D DCT

See Also 2-D IDCT Video and Image Processing Blockset software

2-D FFT Video and Image Processing Blockset software

2-D IFFT Video and Image Processing Blockset software

2-44

2-D FFT

Purpose Compute 2-D FFT of input

Library Transforms

viptransforms

Description The 2-D FFT block computes the fast Fourier transform (FFT) of a
two-dimensional M-by-N input matrix in two steps. First it computes
the one-dimensional FFT along one dimension (row or column). Then
it computes the FFT of the output of the first step along the other
dimension (column or row). The dimensions of the input matrix, M and
N, must be powers of two. To work with other input sizes, use the Pad
block to pad or truncate these dimensions to powers of two.

The output of the 2-D FFT block is equivalent to the MATLAB fft2
function:

y = fft2(A) % Equivalent MATLAB code

Computing the FFT of each dimension of the input matrix is equivalent
to calculating the two-dimensional discrete Fourier transform (DFT),
which is defined by the following equation:

F m n f x y e e
j

mx
M

y

N

x

M j
ny

N(,) (,)=
−

=

−

=

− −
∑∑

2

0

1

0

1 2π π

where 0 1≤ ≤ −m M and 0 1≤ ≤ −n N .

2-45

2-D FFT

Port Description Supported Data Types
Complex
Values
Supported

Input Vector or matrix of
intensity values

• Double-precision floating
point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned
integer

Yes

Output 2-D FFT of the input Same as input port Yes

2-46

2-D FFT

If the input signal data type is floating point, the data type of the output
signal uses the same floating-point data type. Otherwise, the output
can be any fixed-point data type.

Optimizing the Table of Trigonometric Values

The block computes all the possible trigonometric values of the twiddle
factor

e
j

k
K

− 2π

where K is the greater value of either M or N and k K= −0 1, ,� .
The block stores these values in a table and retrieves them during
simulation. You can optimize the table of trigonometric values for
memory or speed using the Optimize table for parameter. This
parameter varies the number of table entries as summarized in the
following table.

Optimize Table for Parameter Setting Number of Table Entries for N-Point FFT

Speed 3N/4-floating point

N - fixed point

Memory N/4 -floating point

Not supported for fixed point

Ordering Output Column Entries

Use the Output in bit-reversed order parameter to specify the
ordering of the column elements of the output as either linear or
bit-reversed. If you select the Output in bit-reversed order check
box, the row and column elements are output in bit-reversed order.
Thus, the mth row element appears at the kth position, where k is the
bit reversed value of m. Also, the nth column element appears at the
lth position, where l is the bit reversed value of n. If you clear the
Output in bit-reversed order check box, the channel elements are
output in linear order.

2-47

2-D FFT

Note The 2-D FFT block calculates its output in bit-reversed order.
Linearly ordering the 2-D FFT block output requires an extra
bit-reversal operation. Thus, in many situations, you can increase the
speed of the 2-D FFT block by selecting the Output in bit-reversed
order check box.

For more information ordering of the output, see “Bit-Reversed Order”
on page 2-50. The 2-D FFT block bit-reverses the order of both the
columns and the rows.

Algorithms Used for FFT Computation

Which algorithms the block uses depends on whether the block input is
floating-point or fixed-point, real or complex. The choice of algorithms
is also affected by whether you want the output in linear or bit-reversed
order. Based on these specifications, the block can use any of the
following algorithms:

• Bit-reversal operation

• Double-signal algorithm

• Half-length algorithm

• Radix-2 decimation-in-time (DIT) algorithm

• Radix-2 decimation-in-frequency (DIF) algorithm

Floating-Point Signals

Complexity
of Input

Output
Ordering

Algorithms Used for FFT
Computation

Complex Linear Bit-reversal operation and radix-2
DIT

Complex Bit-reversed Radix-2 DIF

2-48

2-D FFT

Floating-Point Signals (Continued)

Complexity
of Input

Output
Ordering

Algorithms Used for FFT
Computation

Real Linear Bit-reversal operation and radix-2
DIT in conjunction with the
half-length and double-signal
algorithms

Real Bit-reversed Radix-2 DIF in conjunction with
the half-length and double-signal
algorithms

Fixed-Point Signals

Complexity
of Input

Output
Ordering

Algorithms Used for FFT
Computation

Real or complex Linear Bit-reversal operation and radix-2
DIT

Real or complex Bit-reversed Radix-2 DIF

Fixed-Point Data Types

The following diagrams show the data types used in the 2-D FFT block
for fixed-point signals. You can set the sine table, accumulator, product
output, and output data types displayed in the diagrams in the 2-D FFT
dialog box as discussed in “Dialog Box” on page 2-53.

The block first casts inputs to the output data type and stores them in
the output buffer. Each butterfly stage then processes signals in the
accumulator data type, with the final output of the butterfly being cast
back into the output data type. The block multiplies twiddle factor
values before each butterfly stage in a decimation-in-time FFT and
after each butterfly stage in a decimation-in-frequency FFT.

2-49

2-D FFT

The output of the multiplier appears in the accumulator data type
because both of the inputs to the multiplier are complex. For details on
the complex multiplication performed, refer to “Multiplication Data
Types” in the Signal Processing Blockset documentation.

Example Bit-Reversed Order

Two numbers are bit-reversed values of each other when the binary
representation of one is the mirror image of the binary representation
of the other. For example, in a three-bit system, one and four
are bit-reversed values of each other because the three-bit binary
representation of one, 001, is the mirror image of the three-bit binary

2-50

2-D FFT

representation of four, 100. The following diagram shows the row
indices in linear order. To put them in bit-reversed order

1 Translate the indices into their binary representation with the
minimum number of bits. In this example, the minimum number of
bits is three because the binary representation of 7 is 111.

2 Find the mirror image of each binary entry, and write it beside the
original binary representation.

3 Translate the indices back to their decimal representation.

The row indices now appear in bit-reversed order.

If, on the 2-D FFT block parameters dialog box, you select the Output
in bit-reversed order check box, the block bit-reverses the order of
both the columns and the rows. The next diagram illustrates the linear
and bit-reversed outputs of the 2-D FFT block. The output values are
the same, but they appear in different order.

2-51

2-D FFT

245 13 10 5 10 5 13 9 0 4 15 9 21 6 15 9 21 6 13 9
9 1 14 3

− − + − − − − +
− −

i i i i i.
11 14 31 16 3 5 9 17 7 23 9 17 7 23 9 16 3 5 9

18 5 6 3 19
i i i i i i

i i
+ + − + −

− −
.

−− + − − − + − +
+ + −

24 5 4 4 3 10 4 5 7 16 4 12 4 11 4 5 5 1 4
18 5 6 3 5

i i i i i i
i i

.
44 19 24 5 5 1 4 12 5 11 3 5 7 16 4 34 0 5

4 3 10 3 1 1
i i i i i i

i
+ − + − − +

− − −
.

. . . ii i i i i i i− + − − − − − − + +
+

5 6 13 1 11 5 11 27 6 6 6 2 6 3 4 8 7 6 2 13
8 4 2

.
. .44 11 9 18 4 25 1 4 5 1 1 3 4 5 4 17 6 9 4 2 2 13 1 2i i i i i i i+ − − − − − − − + − −.77

8 4 2 4 11 9 4 5 1 1 18 4 25 1 0 6 2 7 2 2 13 17 6
i

i i i i i i.− − − + − + − + − − + 99 4 34 0 5
4 4 10 3 1 1 11 5 11 5 6 13 1 6 2 13 3 4 8

. .
.

i i
i i i i

+
− + + − + − − − − −7 2 6 27 6 6 6i i i− +

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

7 6 7 1 3 6 2 3
1 3 7 8 7 0 1 6
4 4 3 1 3 5 1 6
3 6 7 4 3 3 5 4
7 7 0 2 6 6 2 3
6 5 2 1 4 4 4 7
3 1 6 0 1 5 1 6
0 3 00 5 5 3 5 5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

245 13 9 0 4 10 5 15 9 21 6 13 15 9 21 6 10 5 13 9
4 3 10

.
.

− − − + − − − +
− −

i i i i i
..3 27 6 6 6 5 6 13 1 3 4 8 7 1 1 2 6 11 5 11 6 2 13i i i i i i i− − − + − + − − − − + ii

i i i i i i i18 5 4 3 10 4 19 24 12 4 11 4 6 3 5 7 16 4 5 4 5 5 1 4− − − − − − − + + +. ii
i i i i i i8 4 2 4 0 6 2 7 4 5 1 1 17 6 9 4 11 9 2 2 13 18 4 25.− − + − + + − − − − + .. .

.
1 34 0 5

9 16 3 5 9 14 31 17 7 23 9 1 17 7 23 9 14 31 16
i i

i i i i i
+

− + − + − + 33 5 9
8 4 2 4 3 4 5 4 18 4 25 1 2 2 13 1 11 9 17 6 9 4

−
+ − − − − + + −

.
.

i
i i i i i i −− − − −

+ − − − − + +
4 5 1 1 1 2 7

18 5 5 5 1 4 5 4 5 7 16 4 6 3 12 5 11 3
. . .

.
i i

i i i i i i 119 24 4 3 10 4
4 4 10 3 6 2 13 11 5 11 2 6 1 1 3 4 8

+ − +
− + − − + + − −

i i
i i i i i

. .
.7 5 6 13 1 27 6 6 6i i i− − − +

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

���������		
����
�
����������������������

����������������������

����������������������������

����������������������

����������������������������

"�����
#�����������$
������
�����������

%��&�� ��������$
������
�����������

� � � � � ! "

� � � � � ! "

�
�
�
�
�

!
"

�
�
�
�
�

!
"

2-52

2-D FFT

Dialog
Box

The Main pane of the 2-D FFT dialog box appears as shown in the
following figure.

2-53

2-D FFT

Optimize table for
Optimize the table of twiddle factor values for Speed or Memory.
This parameter must be set to Speed for fixed-point signals.

Output in bit-reversed order
Designate the order of the output channel elements relative to
the ordering of the input elements. When selected, the output
channel elements appear in bit-reversed order relative to the
input ordering. Otherwise, the output column elements display
in linear order relative to the input ordering. Linearly ordering
the output requires extra data sorting manipulation. For more
information, see “Bit-Reversed Order” on page 2-50.

Divide butterfly outputs by two
When you select this parameter, the output of each butterfly of
the FFT is divided by two.

The Data Types pane of the 2-D FFT dialog box appears as shown in
the following figure.

2-54

2-D FFT

Rounding mode
Select the rounding mode for fixed-point operations. The sine
table values do not obey this parameter; instead, they always
round to Nearest.

2-55

2-D FFT

Overflow mode
Select the overflow mode for fixed-point operations. The sine
table values do not obey this parameter; instead, they are always
saturated.

Sine table data type
Choose how you specify the word length of the values of the sine
table. The fraction length of the sine table values always equals
the word length minus one. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same
word length as input

• An expression that evaluates to a valid data type, for example,
fixdt(1,16)

The sine table values do not obey the Rounding mode and
Overflow mode parameters; instead, they are always saturated
and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data
Types” on page 2-49 and “Multiplication Data Types” for
illustrations depicting the use of the product output data type in
this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Product output data type parameter.

See “Using the Data Type Assistant” in Simulink User’s Guide for
more information.

2-56

2-D FFT

Accumulator data type
Specify the accumulator data type. See “Fixed-Point Data Types”
on page 2-49 for illustrations depicting the use of the accumulator
data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Accumulator data type parameter.

See “Using the Data Type Assistant” in Simulink User’s Guide for
more information.

Output data type
Specify the output data type. See “Fixed-Point Data Types” on
page 2-49 for illustrations depicting the use of the output data
type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the
block calculates the output word length and fraction length
automatically. The internal rule first calculates an ideal output
word length and fraction length using the following equations:

WL WL floor FFT lengthideal output input= + − +(log ())2 1 1

FL FLideal output input=

Using these ideal results, the internal rule then selects word
lengths and fraction lengths that are appropriate for your

2-57

2-D FFT

hardware. For more information, see “Inherit via Internal
Rule”.

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Simulink User’s
Guide for more information.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also 2-D DCT Video and Image Processing Blockset software

2-D IDCT Video and Image Processing Blockset software

2-D IFFT Video and Image Processing Blockset software

FFT Signal Processing Blockset software

IFFT Signal Processing Blockset software

Pad Signal Processing Blockset software

bitrevorder Signal Processing Toolbox software

fft MATLAB

ifft MATLAB

2-58

2-D FIR Filter

Purpose Perform 2-D FIR filtering on input matrix

Library Filtering

Description The 2-D Finite Impulse Response (FIR) filter block filters the input
matrix I using the coefficient matrix H or the coefficient vectors HH
and HV.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Yes

H Matrix of filter coefficients Same as I port. Yes

HH Vector of filter coefficients Same as I port. The input to ports
HH and HV must be the same
data type.

Yes

HV Vector of filter coefficients Same as I port. The input to ports
HH and HV must be the same
data type.

Yes

PVal Scalar value that
represents the constant
pad value

Input must have the same data
type as the input to I port.

Yes

Output Scalar, vector, or matrix
of filtered values

Same as I port. Yes

2-59

2-D FIR Filter

If the input has a floating-point data type, then the output uses the
same data type. Otherwise, the output can be any fixed-point data type.

Select the Separable filter coefficients check box if your filter
coefficients are separable. Using separable filter coefficients reduces
the amount of calculations the block must perform to compute the
output. For example, suppose your input image is M-by-N and your
filter coefficient matrix is x-by-y. For a nonseparable filter with the
Output size parameter set to Same as input port I, it would take

x y M N⋅ ⋅ ⋅

multiply-accumulate (MAC) operations for the block to calculate the
output. For a separable filter, it would only take

()x y M N+ ⋅ ⋅

MAC operations. If you do not know whether or not your filter
coefficients are separable, use the isfilterseparable function.

Here is an example of the function syntax, [S, HCOL, HROW] =
isfilterseparable(H). The isfilterseparable function takes the
filter kernel, H, and returns S, HCOL and HROW. Here, S is a Boolean
variable that is 1 if the filter is separable and 0 if it is not. HCOL is a
vector of vertical filter coefficients, and HROW is a vector of horizontal
filter coefficients.

Use the Coefficient source parameter to specify how to define your
filter coefficients. If you select the Separable filter coefficients check
box and then select a Coefficient source of Specify via dialog, the
Vertical coefficients (across height) and Horizontal coefficients
(across width) parameters appear in the dialog box. You can use these
parameters to enter vectors of vertical and horizontal filter coefficients,
respectively.

You can also use the variables HCOL and HROW, the output of the
isfilterseparable function, for these parameters. If you select the
Separable filter coefficients check box and then select a Coefficient
source of Input port, ports HV and HH appear on the block. Use
these ports to specify vectors of vertical and horizontal filter coefficients.

2-60

2-D FIR Filter

If you clear the Separable filter coefficients check box and select
a Coefficient source of Specify via dialog, the Coefficients
parameter appears in the dialog box. Use this parameter to enter your
matrix of filter coefficients.

If you clear the Separable filter coefficients check box and select a
Coefficient source of Input port, port H appears on the block. Use
this port to specify your filter coefficient matrix.

The block outputs the result of the filtering operation at the Output
port. The Output size parameter and the sizes of the inputs at ports I
and H dictate the dimensions of the output. For example, assume that
the input at port I has dimensions (Mi, Ni) and the input at port H has
dimensions (Mh, Nh). If you select anOutput size of Full, the output
has dimensions (Mi+Mh-1, Ni+Nh-1). If you select an Output size of
Same as input port I, the output has the same dimensions as the
input at port I. If you select an Output size of Valid, the block filters
the input image only where the coefficient matrix fits entirely within
it, so no padding is required. The output has dimensions (Mi-Mh+1,
Ni-Nh+1). However, if all(size(I)<size(H)), the block errors out.

Use the Padding options parameter to specify how to pad the
boundary of your input matrix. To pad your matrix with a constant
value, select Constant. To pad your input matrix by repeating its border
values, select Replicate. To pad your input matrix with its mirror
image, select Symmetric. To pad your input matrix using a circular
repetition of its elements, select Circular. For more information on
padding, see the Image Pad block reference page.

If, for the Padding options parameter, you select Constant, the
Pad value source parameter appears in the dialog box. If you select
Specify via dialog, the Pad value parameter appears in the dialog
box. Use this parameter to enter the constant value with which to pad
your matrix. If you select Pad value source ofInput port, the PVal
port appears on the block. Use this port to specify the constant value
with which to pad your matrix. The pad value must be real if the input
image is real. You will get an error message if the pad value is complex
when the input image is real.

2-61

2-D FIR Filter

Use the Filtering based on parameter to specify the algorithm by
which the block filters the input matrix. If you select Convolution and
set the Output size parameter to Full, the block filters your input
using the following algorithm

C i j A m n H i m j n
n

Na

m

Ma
(,) (,) * (,)

()()
= − −

=

−

=

−

∑∑
0

1

0

1

where 0 1≤ < + −i Ma Mh and 0 1≤ < + −j Na Nh . If you select
Correlation and set the Output size parameter to Full, the block
filters your input using the following algorithm

C i j A m n conj H m i n j
n

Na

m

Ma
(,) (,) ((,))

()()
= ⋅ + +

=

−

=

−

∑∑
0

1

0

1

where 0 1≤ < + −i Ma Mh and 0 1≤ < + −j Na Nh .

The imfilter function from the Image Processing Toolbox™ product
similarly performs N-D filtering of multidimensional images.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D FIR Filter
block for fixed-point signals.

CAST ADDER CASTCOMPLEX
MULTIPLIER

Input (A) data type

Filter coefficient
(H) data type

Accumulator or
Product output
data type

Accumulator
data type

Output (C)
data typeAccumulator

data type

The result of each addition remains
in the accumulator data type

2-62

2-D FIR Filter

You can set the coefficient, product output, accumulator, and output
data types in the block mask as discussed in “Dialog Box” on page 2-64.

The output of the multiplier is in the product output data type if at
least one of the inputs to the multiplier is real. If both of the inputs
to the multiplier are complex, the result of the multiplication is in
the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” in the Signal Processing
Blockset software documentation.

2-63

2-D FIR Filter

Dialog
Box

The Main pane of the 2-D FIR Filter dialog box appears as shown in
the following figure.

2-64

2-D FIR Filter

Separable filter coefficients
Select this check box if your filter coefficients are separable. Using
separable filter coefficients reduces the amount of calculations the
block must perform to compute the output.

Coefficient source
Specify how to define your filter coefficients. Select Specify via
dialog to enter your coefficients in the block parameters dialog
box. Select Input port to specify your filter coefficient matrix
using port H or ports HH and HV.

Coefficients
Enter your real or complex-valued filter coefficient matrix. This
parameter appears if you clear the Separable filter coefficients
check box and then select a Coefficient source of Specify via
dialog. Tunable.

Vertical coefficients (across height)
Enter the vector of vertical filter coefficients for your separable
filter. This parameter appears if you select the Separable filter
coefficients check box and then select aCoefficient source of
Specify via dialog.

Horizontal coefficients (across width)
Enter the vector of horizontal filter coefficients for your separable
filter. This parameter appears if you select the Separable filter
coefficients check box and then select aCoefficient source of
Specify via dialog.

Output size
This parameter controls the size of the filtered output. If you
choose Full, the output has dimensions (Ma+Mh-1, Na+Nh-1).
If you choose Same as input port I, the output has the same
dimensions as the input at port I If you choose Valid, output has
dimensions (Ma-Mh+1, Na-Nh+1).

Padding options
Specify how to pad the boundary of your input matrix. Select
Constant to pad your matrix with a constant value. Select
Replicate to pad your input matrix by repeating its border

2-65

2-D FIR Filter

values. Select Symmetricto pad your input matrix with its mirror
image. Select Circular to pad your input matrix using a circular
repetition of its elements. This parameter appears if you select an
Output size of Full or Same as input port I.

Pad value source
Use this parameter to specify how to define your constant
boundary value. Select Specify via dialog to enter your value
in the block parameters dialog box. Select Input port to specify
your constant value using the PVal port. This parameter appears
if you select a Padding options of Constant.

Pad value
Enter the constant value with which to pad your matrix. This
parameter is visible if, for the Pad value source parameter, you
select Specify via dialog. Tunable. The pad value must be real
if the input image is real. You will get an error message if the pad
value is complex when the input image is real.

Filtering based on
Specify the algorithm by which the block filters the input matrix.
You can select Convolution or Correlation.

The Data Types pane of the 2-D FIR Filter dialog box appears as
shown in the following figure.

2-66

2-D FIR Filter

2-67

2-D FIR Filter

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Coefficients
Choose how to specify the word length and the fraction length
of the filter coefficients.

• When you select Same word length as input, the word
length of the filter coefficients match that of the input to the
block. In this mode, the block automatically sets the fraction
length of the coefficients to the binary-point only scaling that
provides you with the best precision possible given the value
and word length of the coefficients.

• When you select Specify word length, you can enter the
word length of the coefficients, in bits. In this mode, the block
automatically sets the fraction length of the coefficients to
the binary-point only scaling that provides you with the best
precision possible given the value and word length of the
coefficients.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the coefficients, in bits.

• When you select Slope and bias scaling, you can enter
the word length, in bits, and the slope of the coefficients. All
signals in the Video and Image Processing Blockset software
have a bias of 0.

The filter coefficients do not obey the Rounding mode and the
Overflow mode parameters; instead, they always saturated and
rounded to Nearest.

Product output
Use this parameter to specify how to designate the product output
word and fraction lengths. Refer to “Fixed-Point Data Types”
on page 2-62 and “Multiplication Data Types” in the Signal

2-68

2-D FIR Filter

Processing Blockset documentation for illustrations depicting the
use of the product output data type in this block:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. All
signals in the Video and Image Processing Blockset software
have a bias of 0.

If you set the Coefficent source (on the Main tab) to Input
portthe Product Output will inherit its sign according to the
inputs. If either or both input I1 and I2 are signed, the Product
Output will be signed. Otherwise, the Product Output is unsigned.
The following table shows all cases.

Sign of Input I1 Sign of Input I2 Sign of Product
Output

unsigned unsigned unsigned

unsigned signed signed

signed unsigned signed

signed signed signed

Accumulator
Use this parameter to specify how to designate the accumulator
word and fraction lengths. Refer to “Fixed-Point Data Types”
on page 2-62 and “Multiplication Data Types” in the Signal
Processing Blockset documentation for illustrations depicting the
use of the accumulator data type in this block. The accumulator
data type is only used when both inputs to the multiplier are
complex:

2-69

2-D FIR Filter

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. All
signals in the Video and Image Processing Blockset software
have a bias of 0.

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. All signals
in the Video and Image Processing Blockset software have a
bias of 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also imfilter Image Processing Toolbox

2-70

2-D Histogram (Obsolete)

Purpose Generate histogram of each input matrix

Library Statistics

Description
Note The 2-D Histogram block is obsolete. It may be removed in a
future version of the Video and Image Processing Blockset software.
Use the replacement block Histogram.

The 2-D Histogram block computes the frequency distribution of the
elements in each input matrix or in a sequence of inputs over a period
of time. Use the Running histogram check box to select between the
block’s basic and running operation.

The output of the 2-D Histogram block is different than the output of
the imhist function in the Image Processing Toolbox. For intensity
images, the imhist function defines the pth bin boundaries as

A p
N

x
A p

N
(.)
()

(.)
()

−
−

≤ < −
−

1 5
1

0 5
1

where A is maximum value of the data type, N is the number of bins in
the histogram, and p starts from 1. The 2-D Histogram block defines
bin boundaries as

A p
N

x
Ap
N

()− < ≤1

where A corresponds to the Maximum value of input parameter and
theMinimum value of input parameter is assumed to be 0.

2-71

2-D Histogram (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

Input / I Vector or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

Yes

Rst Signal that triggers a
reset event

• Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

Output Sample-based 1-by-N
vector that represents the
frequency distribution
of each M-by-N input
matrix or the frequency
distributions in a series
of M-by-N inputs

Same as Input port No

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

The block sorts the elements of each input matrix into the number of
discrete bins, n, specified by the Number of bins parameter. Complex
inputs are sorted by their magnitude squared values.

The histogram value for a given bin represents the frequency of
occurrence of the input values bracketed by that bin. You specify the
upper boundary of the highest-valued bin in the Maximum value of
input parameter, BM, and the lower boundary of the lowest-valued

2-72

2-D Histogram (Obsolete)

bin in the Minimum value of input parameter, Bm. The bins have
equal width of

where n is the number of bins. The centers are located at

Input values that fall on the border between two bins are sorted into
the lower-valued bin; that is, each bin includes its upper boundary.
For example, a bin of width 4 centered on the value 5 contains the
input value 7, but not the input value 3. Input values greater than the
Maximum value of input parameter or less thanMinimum value of
input parameter are sorted into the highest-valued or lowest-valued
bin, respectively. The values you enter for the Maximum value of
input andMinimum value of input parameters must be real-valued
scalar values.

Basic Operation

If you clear the Running histogram check box, the block computes
the frequency distribution of each M-by-N input matrix and outputs a
sample-based 1-by-N vector.

For example, if your input is

1 1 1
2 2 2
3 3 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
and you set the block

parameters as follows:

• Minimum value of input = 0

• Maximum value of input = 4

• Number of bins = 4

2-73

2-D Histogram (Obsolete)

The block outputs [3 3 3 0].

If you select the Normalized check box, the block scales each element
of the output so that sum(v) is 1, where v is the output vector.

Running Operation

If you select the Running histogram check box, the block computes
the frequency distributions in a series of M-by-N inputs.

For example, if your first input is

1 1 1
2 2 2
3 3 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, your second and current

input is

2 2 2
3 3 3
4 4 4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, and you set the block parameters as follows:

• Minimum value of input = 0

• Maximum value of input = 4

• Number of bins = 4

The block outputs [3 6 6 3]. For the next input, the block computes
the frequency distribution for the first three inputs, and so on.

Resetting the Running Histogram

The block resets the running histogram whenever a reset event is
detected at the optional Rst port. The reset signal and the input data
signal must be the same rate.

To enable the Rst port, select the Reset port parameter. You specify
the reset event in the Trigger type parameter, and can be one of the
following:

• Rising edge— Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or 0

2-74

2-D Histogram (Obsolete)

- Rises from 0 to a positive value, where the rise is not a continuation
of a rise from a negative value to 0 (see the following figure)

��������	��
��������	��

��������	�
���
���
���
��������
��������
��������������������
��������������
������������������	��

��������	��

• Falling edge— Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or 0

- Falls from zero to a negative value, where the fall is not a
continuation of a fall from a positive value to 0 (see the following
figure)

���������	�����������	��

�����������
���
���
���
��������
��������
��������������������
��������������
����������

���������	��
���������	��

• Either edge -- Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described previously)

2-75

2-D Histogram (Obsolete)

• Non-zero sample -- Triggers a reset operation at each sample time
that the Rst input is not 0

Note When running simulations in the Simulink MultiTasking mode,
sample-based reset signals have a one-sample latency, and frame-based
reset signals have one frame of latency. Thus, there is a one-sample or
one-frame delay between the time the block detects a reset event, and
when it applies the reset. For more information on latency and the
Simulink tasking modes, see “Configuration Parameters Dialog Box”
in the Simulink documentation.

Dialog
Box

The Main pane of the 2-D Histogram dialog box:

2-76

2-D Histogram (Obsolete)

Minimum value of input

Enter a real-valued scalar value for the lower boundary, Bm , of
the lowest-valued bin. Tunable.

Maximum value of input
Enter a real-valued scalar value for the upper boundary, BM , of
the highest-valued bin. Tunable.

Number of bins
Enter the number of bins, n, in the histogram.

Normalized
If you select this check box, the block normalizes the output vector
(1-norm). Tunable.

Use of this parameter is not supported for fixed-point signals.

Running histogram
Select this check box to enable the block’s running histogram
operation.

Reset port
Enables the Rst input port when selected. The reset signal and
the input data signal must be the same rate. This parameter is
visible if you select the Running histogram check box.

Trigger type
The type of event that resets the running histogram. For more
information, see “Resetting the Running Histogram” on page
2-74. This parameter is enabled only when you set the Reset
port parameter.

The Fixed-point pane of the 2-D Histogram dialog box:

2-77

2-D Histogram (Obsolete)

Note The fixed-point parameters are only used for fixed-point complex
inputs, which are sorted by squared magnitude.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how to designate the product output
word and fraction lengths:

• When you select Same as input, these characteristics match
those of the input to the block.

2-78

2-D Histogram (Obsolete)

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. This
block requires power-of-two slope and a bias of 0.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block:

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of 0.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the
autoscaling tool in the Fixed-Point Tool. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the
Simulink documentation.

See Also 2-D Autocorrelation Video and Image Processing Blockset
software

2-D Correlation Video and Image Processing Blockset
software

2-79

2-D Histogram (Obsolete)

Mean Video and Image Processing Blockset
software

Median Video and Image Processing Blockset
software

Standard Deviation Video and Image Processing Blockset
software

Variance Video and Image Processing Blockset
software

Histogram Signal Processing Blockset software

Maximum Signal Processing Blockset software

Minimum Signal Processing Blockset software

hist MATLAB application

imhist Image Processing Toolbox software

2-80

2-D IDCT

Purpose Compute 2-D inverse discrete cosine transform (IDCT)

Library Transforms

viptransforms

Description The 2-D IDCT block calculates the two-dimensional inverse
discrete cosine transform of the input signal. The equation for the
two-dimensional IDCT is

f x y
MN

C m C n F m n
x m

M
y

n

N

m

M
(,) () () (,) cos

()
cos

(= + +

=

−

=

−

∑∑2 2 1
2

2

0

1

0

1 π 11
2

)n
N

π

where F(m,n) is the DCT of the signal f(x,y) and
C m C n(), () = 1

2 for

m n, = 0 and C m C n(), () = 1 otherwise.

The number of rows and columns of the input signal must be powers
of two. The output of this block has dimensions the same dimensions
as the input.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of
intensity values

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned
integer

No

2-81

2-D IDCT

Port Input/Output Supported Data Types
Complex
Values
Supported

Output 2-D IDCT of the input Same as Input port No

If the data type of the input signal is floating point, the output of the
block is the same data type.

Use the Sine and cosine computation parameter to specify how the
block computes the sine and cosine terms in the IDCT algorithm. If
you select Trigonometric fcn, the block computes the sine and cosine
values during the simulation. If you select Table lookup, the block
computes and stores the trigonometric values before the simulation
starts. In this case, the block requires extra memory.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D IDCT block
for fixed-point signals. Inputs are first cast to the output data type and
stored in the output buffer. Each butterfly stage processes signals in
the accumulator data type, with the final output of the butterfly being
cast back into the output data type.

2-82

2-D IDCT

2-83

2-D IDCT

The output of the multiplier is in the product output data type when
at least one of the inputs to the multiplier is real. When both of the
inputs to the multiplier are complex, the result of the multiplication is
in the accumulator data type. For details on the complex multiplication
performed, refer to “Multiplication Data Types” in the Signal Processing
Blockset documentation. You can set the sine table, product output,
accumulator, and output data types in the block mask as discussed
in the next section.

2-84

2-D IDCT

Dialog
Box

The Main pane of the 2-D IDCT dialog box appears as shown in the
following figure.

Sine and cosine computation
Specify how the block computes the sine and cosine terms in the
IDCT algorithm. If you select Trigonometric fcn, the block
computes the sine and cosine values during the simulation. If

2-85

2-D IDCT

you select Table lookup, the block computes and stores the
trigonometric values before the simulation starts. In this case, the
block requires extra memory.

The Data Types pane of the 2-D IDCT dialog box appears as shown in
the following figure.

2-86

2-D IDCT

Rounding mode
Select the rounding mode for fixed-point operations. The sine table
values do not obey this parameter; they always round to Nearest.

Overflow mode
Select the overflow mode for fixed-point operations. The sine
table values do not obey this parameter; instead, they are always
saturated.

Sine table data type
Choose how you specify the word length of the values of the sine
table. The fraction length of the sine table values always equals
the word length minus one. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same
word length as input

• An expression that evaluates to a valid data type, for example,
fixdt(1,16)

The sine table values do not obey the Rounding mode and
Overflow mode parameters; instead, they are always saturated
and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data
Types” on page 2-82 and “Multiplication Data Types” for
illustrations depicting the use of the product output data type in
this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Product output data type parameter.

2-87

2-D IDCT

See “Using the Data Type Assistant” in Simulink User’s Guide for
more information.

Accumulator data type
Specify the accumulator data type. See “Fixed-Point Data Types”
on page 2-82 for illustrations depicting the use of the accumulator
data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Accumulator data type parameter.

See “Using the Data Type Assistant” in Simulink User’s Guide for
more information.

Output data type
Specify the output data type. See “Fixed-Point Data Types” on
page 2-82 for illustrations depicting the use of the output data
type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the
block calculates the output word length and fraction length
automatically. The internal rule first calculates an ideal output
word length and fraction length using the following equations:

WL WL floor DCT lengthideal output input= + − +(log ())2 1 1

FL FLideal output input=

2-88

2-D IDCT

Using these ideal results, the internal rule then selects word
lengths and fraction lengths that are appropriate for your
hardware. For more information, see “Inherit via Internal
Rule”.

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Simulink User’s
Guide for more information.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the
autoscaling tool in the Fixed-Point Tool. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the
Simulink documentation.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] Chen, W.H, C.H. Smith, and S.C. Fralick, “A fast computational
algorithm for the discrete cosine transform,”IEEE Trans. Commun.,
vol. COM-25, pp. 1004-1009. 1977.

[2] Wang, Z. “Fast algorithms for the discrete W transform and for
the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-32, pp. 803-816, Aug. 1984.

2-89

2-D IDCT

See Also 2-D DCT Video and Image Processing Blockset
software

2-D FFT Video and Image Processing Blockset
software

2-D IFFT Video and Image Processing Blockset
software

2-90

2-D IFFT

Purpose Compute 2-D IFFT of input

Library Transforms

viptransforms

Description The 2-D IFFT block computes the inverse fast Fourier transform
(IFFT) of an M-by-N input matrix in two steps. First, it computes the
one-dimensional IFFT along one dimension (row or column). Next,
it computes the IFFT of the output of the first step along the other
dimension (column or row). The dimensions of the input matrix, M and
N, must be powers of two. To work with other input sizes, use the Pad
block to pad or truncate these dimensions to powers of two.

The output of the IFFT block is equivalent to the MATLAB ifft2
function:

y = ifft2(A) % Equivalent MATLAB code

Computing the IFFT of each dimension of the input matrix is equivalent
to calculating the two-dimensional inverse discrete Fourier transform
(IDFT), which is defined by the following equation:

f x y
MN

F m n e e
j

mx
M

n

N

m

M j
ny

N(,) (,)=
=

−

=

−

∑∑1
2

0

1

0

1 2π π

where 0 1≤ ≤ −x M and 0 1≤ ≤ −y N .

The output of this block has the same dimensions as the input.

2-91

2-D IFFT

Port Description Supported Data Types
Complex
Values
Supported

Input Vector or matrix of
intensity values

• Double-precision
floating point

• Single-precision
floating point

• Fixed point

• 8-, 16-, 32-bit signed
integer

• 8-, 16-, 32-bit unsigned
integer

Yes

Output 2-D IFFT of the
input

Same as Input port Yes

If the input signal has a floating-point data type,, the data type of the
output signal uses the same floating-point data type. Otherwise, the
output can be any fixed-point data type.

Optimizing the Table of Trigonometric Values

The block computes all the possible trigonometric values of the twiddle
factor

e
j

k
K

2π

where K is the greater value of either M or N and k K= −0 1, ,� .
The block stores these values in a table and retrieves them during
simulation. You can optimize the table of trigonometric values
for memory consumption or speed using the Optimize table for
parameter. This parameter varies the number of table entries as
summarized in the following table.

2-92

2-D IFFT

Optimize Table for Parameter
Setting Number of Table Entries for N-Point IFFT

Speed 3N/4 —floating point

N — fixed point

Memory N/4 — floating point

Not supported for fixed point

Input Order

You must select the Input is in bit-reversed order check box to
designate whether the input column elements should appear in linear
or bit-reversed order. If you select the Input is in bit-reversed order
check box, the block assumes the input is in bit-reversed order. If you
clear the Input is in bit-reversed order check box, block assumes
the input is in linear order.

For more information ordering of the output, see “Bit-Reversed Order”
on page 2-50. The 2-D FFT block bit-reverses the order of both the
columns and the rows..

Conjugate Symmetric Input

The FFT block yields conjugate symmetric output when its input is
real valued. Taking the IFFT of a conjugate symmetric input matrix
produces real-valued output. Therefore, if the input to the block is
both floating point and conjugate symmetric and you select the Input
is conjugate symmetric check box, the block produces real-valued
outputs. Selecting this check box optimizes the block’s computation
method.

If the IFFT block input is conjugate symmetric and you do not select the
Input is conjugate symmetric check box, the IFFT block outputs a
complex-valued signal with small imaginary parts. The block output
is invalid if you select this check box and the input is not conjugate
symmetric.

2-93

2-D IFFT

Note The Input is conjugate symmetric parameter cannot be used
for fixed-point signals.

Scaled Output

The Divide output by product of FFT length in each input
dimension check box defaults to selected. The block computes scaled
and unscaled versions of the IFFT. If you select this option, the block
computes the scaled version of the IFFT.

The unscaled IFFT is defined by the following equation:

f x y F m n e e
j

mx
M

n

N

m

M j
ny

N(,) (,)=
=

−

=

−

∑∑
2

0

1

0

1 2π π

where 0 1≤ ≤ −x M and 0 1≤ ≤ −y N .

The scaled version of the IFFT multiplies the above unscaled version

by
1

MN
.

Algorithms Used for IFFT Computation

Depending on whether the block input is floating point or fixed point,
real or complex valued, and conjugate symmetric, the block uses one or
more of the following algorithms as summarized in the following tables:

• Butterfly operation

• Double-signal algorithm

• Half-length algorithm

• Radix-2 decimation-in-time (DIT) algorithm

• Radix-2 decimation-in-frequency (DIF) algorithm

2-94

2-D IFFT

Algorithms for Floating-Point Signals

Input
Complexity

Other Parameter
Settings

Algorithms Used for IFFT
Computation

Real or complex Butterfly operation and radix-2 DIT

Real or complex Radix-2 DIF

Real or complex Butterfly operation and radix-2 DIT in
conjunction with the half-length and
double-signal algorithms

Real or complex Radix-2 DIF in conjunction with
the half-length and double-signal
algorithms

Algorithms for Fixed-Point Signals

Input
Complexity

Other Parameter
Settings

Algorithms Used for IFFT
Computation

Real or complex Butterfly operation and radix-2 DIT

Real or complex Radix-2 DIF

Note The Input is conjugate symmetric parameter cannot be used
for fixed-point signals.

2-95

2-D IFFT

Fixed-Point Data Types

The following diagrams show the data types used in the IFFT block for
fixed-point signals. You can set the sine table, accumulator, product
output, and output data types displayed in the diagrams in the IFFT
dialog box as discussed in “Dialog Box” on page 2-98.

Inputs to the IFFT block are first cast to the output data type and stored
in the output buffer. Each butterfly stage then processes signals in the
accumulator data type, with the final output of the butterfly being cast
back into the output data type. The block multiplies in a twiddle factor
before each butterfly stage in a decimation-in-time IFFT and after each
butterfly stage in a decimation-in-frequency IFFT.

2-96

2-D IFFT

The multiplier output appears in the accumulator data type because
both of the inputs to the multiplier are complex. For details on the
complex multiplication performed, refer to “Multiplication Data Types”
in the Signal Processing Blockset documentation.

2-97

2-D IFFT

Dialog
Box

The Main pane of the 2-D IFFT dialog box appears as shown in the
following figure.

2-98

2-D IFFT

Optimize table for
Optimize the table of trigonometric values for Speed or Memory.
This parameter must be set to Speed for fixed-point signals.

Input is in bit-reversed order
Designate the order of the input channel elements. Select this
check box when the input should appear in reversed order, and
clear it when the input should appear in linear order. in linear
order. The block yields invalid outputs when you do not set this
parameter correctly. See “Input Order” on page 2-93.

Input is conjugate symmetric
Select when the input to the block is both floating point and
conjugate symmetric, and you want real-valued outputs. The
block output is invalid when you set this parameter when the
input is not conjugate symmetric. You cannot use this parameter
for fixed-point signals.

Divide output by product of FFT length in each input dimension
Select this check box to compute the scaled IFFT.

The Data Types pane of the 2-D IFFT dialog box appears as shown in
the following figure.

2-99

2-D IFFT

Rounding mode
Select the rounding mode for fixed-point operations. The sine
table values do not obey this parameter; instead, they always
round to Nearest.

2-100

2-D IFFT

Overflow mode
Select the overflow mode for fixed-point operations. The sine
table values do not obey this parameter; instead, they are always
saturated.

Sine table data type
Choose how you specify the word length of the values of the sine
table. The fraction length of the sine table values always equals
the word length minus one. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit: Same
word length as input

• An expression that evaluates to a valid data type, for example,
fixdt(1,16)

The sine table values do not obey the Rounding mode and
Overflow mode parameters; instead, they are always saturated
and rounded to Nearest.

Product output data type
Specify the product output data type. See “Fixed-Point Data
Types” on page 2-96 and “Multiplication Data Types” for
illustrations depicting the use of the product output data type in
this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Product output data type parameter.

See “Using the Data Type Assistant” in Simulink User’s Guide for
more information.

2-101

2-D IFFT

Accumulator data type
Specify the accumulator data type. See“Fixed-Point Data Types”
on page 2-96 for illustrations depicting the use of the accumulator
data type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Accumulator data type parameter.

See “Using the Data Type Assistant” in Simulink User’s Guide for
more information.

Output data type
Specify the output data type. See “Fixed-Point Data Types” on
page 2-96 for illustrations depicting the use of the output data
type in this block. You can set this parameter to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the
block calculates the output word length and fraction length
automatically. The internal rule first calculates an ideal output
word length and fraction length using the following equations:

WL WL floor FFT lengthideal output input= + − +(log ())2 1 1

FL FLideal output input=

Using these ideal results, the internal rule then selects word
lengths and fraction lengths that are appropriate for your

2-102

2-D IFFT

hardware. For more information, see “Inherit via Internal
Rule”.

• An expression that evaluates to a valid data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Simulink User’s
Guide for more information.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also 2-D DCT Video and Image Processing Blockset software

2-D FFT Video and Image Processing Blockset software

2-D IDCT Video and Image Processing Blockset software

FFT Signal Processing Blockset software

IFFT Signal Processing Blockset software

Pad Signal Processing Blockset software

bitrevorder Signal Processing Toolbox software

fft MATLAB

ifft MATLAB

2-103

2-D Maximum (Obsolete)

Purpose Find maximum values in an input or sequence of inputs

Library vipobslib

Description
Note The 2-D Maximum block is obsolete. It may be removed in a
future version of the Video and Image Processing Blocksetsoftware. Use
the replacement block Maximum.

The 2-D Maximum block identifies the value and/or position of the
largest element in each column of the input, or tracks the maximum
values in a sequence of inputs over a period of time. The Mode
parameter specifies the block’s mode of operation and can be set to
Value, Index, Value and Index, or Running.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of
intensity values

• Double-precision floating
point

• Single-precision floating point

• Fixed point -- Signed and
unsigned real fixed point, and
signed complex fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Yes

Rst Scalar value Boolean No

2-104

2-D Maximum (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

Val Maximum value in each
M-by-N input matrix

Same as Input port Yes

Idx Two-element vector of
the form [row index
column index] that
represents the zero-based
location of the maximum
value

Same as Input port No

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

Value Mode

When Mode is set to Value, the block computes the maximum value
in each column of the M-by-N input matrix u independently at each
sample time.

val = max(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated asM-by-1 column vectors.

The output at each sample time, val, is a 1-by-N vector containing the
maximum value of each column in u.

For complex inputs, the block selects the value in each column that has
the maximum magnitude squared as shown in the following figure. For
complex value u = a + bi, the magnitude squared is a2 + b2.

2-105

2-D Maximum (Obsolete)

Index Mode

When Mode is set to Index, the block computes the maximum value
in each column of the M-by-N input matrix u,

[val,idx] = max(u) % Equivalent MATLAB code

and outputs the sample-based 1-by-N index vector, idx. Each value
in idx is an integer in the range [1 M] indexing the maximum value
in the corresponding column of u. When inputs to the block are
double-precision values, the index values are double-precision values.
Otherwise, the index values are 32-bit unsigned integer values.

As in Value mode, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated asM-by-1 column vectors.

When a maximum value occurs more than once in a particular column of
u, the computed index corresponds to the first occurrence. For example,
when the input is the column vector [3 2 1 2 3]', the computed index
of the maximum value is 1 rather than 5.

Value and Index Mode

When Mode is set to Value and Index, the block outputs both the
vector of maxima, val, and the vector of indices, idx.

Running Mode

When Mode is set to Running, the block tracks the maximum value of
each channel in a time-sequence of M-by-N inputs. For sample-based
inputs, the output is a sample-based M-by-N matrix with each element
yij containing the maximum value observed in element uij for all inputs
since the last reset. For frame-based inputs, the output is a frame-based

2-106

2-D Maximum (Obsolete)

M-by-N matrix with each element yij containing the maximum value
observed in the jth column of all inputs since the last reset, up to and
including element uij of the current input.

As in the other modes, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated asM-by-1 column vectors.

Resetting the Running Maximum

The block resets the running maximum whenever a reset event is
detected at the optional Rst port. The rate of the reset signal must be a
positive integer multiple of the rate of the data signal input.

For sample-based inputs, a reset event causes the running maximum
for each channel to be initialized to the value in the corresponding
channel of the current input. For frame-based inputs, a reset event
causes the running maximum for each channel to be initialized to the
earliest value in each channel of the current input.

You specify the reset event in the Reset port menu:

• None —- Disables the Rst port.

• Rising edge— Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or 0

- Rises from 0 to a positive value, where the rise is not a continuation
of a rise from a negative value to 0 (see the following figure)

2-107

2-D Maximum (Obsolete)

��������	��
��������	��

��������	�
���
���
���
��������
��������
��������������������
��������������
������������������	��

��������	��

• Falling edge— Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or 0

- Falls from 0 to a negative value, where the fall is not a continuation
of a fall from a positive value to 0 (see the following figure)

���������	�����������	��

�����������
���
���
���
��������
��������
��������������������
��������������
����������

���������	��
���������	��

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described previously)

• Non-zero sample— Triggers a reset operation at each sample time
that the Rst input is not 0

2-108

2-D Maximum (Obsolete)

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when the
block detects a reset event, there is a one-sample delay at the reset
port rate before the block applies the reset. For more information
on latency and the Simulink tasking modes, see “Configuration
Parameters Dialog Box” in the Simulink documentation.

Fixed-Point Data Types

The parameters on the Fixed-point pane of the dialog box are only
used for complex fixed-point inputs. The sum of the squares of the real
and imaginary parts of such an input are formed before a comparison is
made, as described in “Value Mode” on page 2-105. The results of the
squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into
the accumulator data type. These parameters are ignored for other
types of inputs.

2-109

2-D Maximum (Obsolete)

Dialog
Box

The Main pane of the 2-D Maximum dialog box appears as shown in
the following figure.

Mode
Specify the block’s mode of operation:

• Value— Output the maximum value of each input matrix

• Index— Output the zero-based index location of the maximum
value

• Value and Index — Output both the value and the index
location

• Running — Track the maximum value of the input sequence
over time

2-110

2-D Maximum (Obsolete)

Index base
Specify whether the index is zero based or one based.

Find the maximum value of
Specify whether the block should find the maximum of the entire
input or of each row or column.

Reset port
Specify the reset event detected at the Rst input port when you
select Running for the Mode parameter. The rate of the reset
signal must be a positive integer multiple of the rate of the data
signal input. This parameter is only visible if, for the Mode
parameter, you select Running.

The Fixed-point pane of the 2-D Maximum dialog box appears as
shown in the following figure.

2-111

2-D Maximum (Obsolete)

Note The parameters on the Fixed-point pane are only used for
complex fixed-point inputs. The sum of the squares of the real and
imaginary parts of such an input are formed before a comparison is
made, as described in “Value Mode” on page 2-105. The results of the
squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into
the accumulator data type. These parameters are ignored for other
types of inputs.

Rounding mode
Select the rounding mode for fixed-point operations.

2-112

2-D Maximum (Obsolete)

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how to designate the product output
word and fraction lengths resulting from a complex-complex
multiplication in the block. Refer to “Multiplication Data Types”
in the Signal Processing Blockset documentation for more
information:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. This
block requires power-of-two slope and a bias of 0.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in
the block. Refer to “Multiplication Data Types” in the Signal
Processing Blockset documentation for more information:

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of 0.

2-113

2-D Maximum (Obsolete)

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the
autoscaling tool in the Fixed-Point Tool. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the
Simulink documentation.

2-114

2-D Mean (Obsolete)

Purpose Find mean value of each input matrix

Library Statistics

Description
Note The 2-D Mean block is obsolete. It may be removed in a future
version of the Video and Image Processing Blocksetsoftware. Use the
replacement block Mean.

The 2-D Mean block computes the mean of each input matrix or the
mean value in a sequence of inputs over time. It can also compute the
mean over a particular region of interest (ROI). Use theRunning mean
check box to choose between the block’s basic and running operation.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of
intensity values

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned
integer

Yes

Rst Scalar value Boolean No

2-115

2-D Mean (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

ROI • Rectangle — [r c
height width]

• Lines — [r1 c1 r2 c2],
where r1 and c1 are
the row and column
coordinates of the
beginning of the line
and r2 and c2 are
the row and column
coordinates of the
end of the line.

• Binary mask —
Binary image matrix
that enables you to
specify which pixels
to highlight.

Rectangles and lines —

• Double-precision floating
point

• Single-precision floating
point

• Boolean

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

Binary mask —

• Boolean

No

Label Matrix where pixels
equal to 0 represent
the background, pixels
equal to 1 represent
the first object, pixels
equal to 2 represent the
second object, and so on.

• 8-, 16-, and 32-bit unsigned
integer

No

Label
Numbers

Vector containing the
label numbers for the
regions for which the
block will compute the
statistics.

• 8-, 16-, and 32-bit unsigned
integer

No

2-116

2-D Mean (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

Output/Out Without ROI processing
— Mean of each M-by-N
input matrix or the
mean for each element
of a series of M-by-N
inputs.

With ROI processing
— Vector of separate
statistical values for
each ROI or a scalar
value that represents
the statistical value for
all specified ROIs.

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

Yes

Flag Boolean value that
indicates whether the
ROI is within the image
bounds or the label
number is within the
label matrix.

Boolean No

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

Basic Operation

When you clear the Running mean check box, the block computes the
mean of each M-by-N input matrix and outputs it from the block. The
equivalent MATLAB code is mean(u(:)), where u is the input matrix.

The mean of a complex input is computed independently for the real
and imaginary components, as shown in the following figure.

2-117

2-D Mean (Obsolete)

4 2 1
3 5 2
+ +

−
⎡

⎣
⎢

⎤

⎦
⎥

i i
i

'���
��������
(�����

3 25 0 25. .+[]i

Running Operation

When you select the Running mean check box, the block computes the
mean for each element of a series of M-by-N inputs.

For example, suppose A is the first input to the block and B is the
second and current input to the block, where

A =
⎡

⎣
⎢

⎤

⎦
⎥

1 3
2 4

and

B =
⎡

⎣
⎢

⎤

⎦
⎥

5 7
6 8

The block computes the mean corresponding to each element,

mean mean
mean mean

([,]) ([,])
([,]) ([,])

1 5 3 7
2 6 4 8

⎡

⎣
⎢

⎤

⎦
⎥

and outputs

3 5
4 6

⎡

⎣
⎢

⎤

⎦
⎥

For the next input, the block computes the mean for each element of
the first three inputs, and so on.

2-118

2-D Mean (Obsolete)

Resetting the Running Mean

The block resets the running mean whenever a reset event is detected
at the optional Rst port. The rate of the reset signal must be a positive
integer multiple of the rate of the data signal input.

When the block is reset, the running mean associated with each element
is initialized to the value in the corresponding location of the current
input.

You specify the reset event using the Reset port parameter:

• None — Disables the Rst port

• Rising edge— Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or 0

- Rises from 0 to a positive value, where the rise is not a continuation
of a rise from a negative value to 0 (see the following figure)

��������	��
��������	��

��������	�
���
���
���
��������
��������
��������������������
��������������
������������������	��

��������	��

• Falling edge— Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or 0

- Falls from 0 to a negative value, where the fall is not a continuation
of a fall from a positive value to 0 (see the following figure)

2-119

2-D Mean (Obsolete)

���������	�����������	��

�����������
���
���
���
��������
��������
��������������������
��������������
����������

���������	��
���������	��

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described previously)

• Non-zero sample— Triggers a reset operation at each sample time
that the Rst input is not 0

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when the
block detects a reset event, there is a one-sample delay at the reset
port rate before the block applies the reset. For more information
on latency and the Simulink tasking modes, see “Configuration
Parameters Dialog Box” in the Simulink documentation.

ROI Processing

To calculate the statistical value within a particular region of each
image, select the Enable ROI processing check box. This option is not
available when the block is in running mode.

Use the ROI type parameter to specify whether the ROI is a rectangle,
line, label matrix, or binary mask. A binary mask is a binary image
that enables you to specify which pixels to highlight, or select. In a label
matrix, pixels equal to 0 represent the background, pixels equal to 1
represent the first object, pixels equal to 2 represent the second object,
and so on. When the ROI type parameter is set to Label matrix, the

2-120

2-D Mean (Obsolete)

Label and Label Numbers ports appear on the block. Use the Label
Numbers port to specify the objects in the label matrix for which the
block calculates statistics. The input to this port must be a vector
of scalar values that correspond to the labeled regions in the label
matrix. For more information about the format of the input to the ROI
port when the ROI is a rectangle or a line, see the Draw Shapes block
reference page.

For rectangular ROIs, use the ROI portion to process parameter to
specify whether to calculate the statistical value for the entire ROI
or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can
output separate statistical values for each ROI or the statistical value
for all specified ROIs. This parameter is not available if, for the ROI
type parameter, you select Binary mask.

If, for the ROI type parameter you select Rectangles or Lines, the
Output flag indicating if ROI is within image bounds check box
appears in the dialog box. If you select this check box, the Flag port
appears on the block. The following tables describe the Flag port output
based on the block parameters.

Output = Individual statistics for each ROI

Flag
Port
Output

Description

0 ROI is completely outside the input image.

1 ROI is completely or partially inside the input image.

2-121

2-D Mean (Obsolete)

Output = Single statistic for all ROIs

Flag
Port
Output

Description

0 All ROIs are completely outside the input image.

1 At least one ROI is completely or partially inside the
input image.

If the ROI is partially outside the image, the block only computes the
statistical values for the portion of the ROI that is within the image.

If, for the ROI type parameter you select Label matrix, the Output
flag indicating if input label numbers are valid check box appears
in the dialog box. If you select this check box, the Flag port appears on
the block. The following tables describe the Flag port output based
on the block parameters.

Output = Individual statistics for each ROI

Flag
Port
Output

Description

0 Label number is not in the label matrix.

1 Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag
Port
Output

Description

0 None of the label numbers are in the label matrix.

1 At least one of the label numbers is in the label matrix.

2-122

2-D Mean (Obsolete)

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D Mean block
for fixed-point signals.

You can set the accumulator and output data types in the dialog box.

2-123

2-D Mean (Obsolete)

Dialog
Box

The Main pane of the 2-D Mean dialog box appears as shown in the
following figure.

Running mean
Select this check box to enable the block’s running operation.

Reset port
Determines the reset event that causes the block to reset the
running mean. The rate of the reset signal must be a positive
integer multiple of the rate of the data signal input. This
parameter is visible only when you select the Running mean
check box.

Enable ROI processing
Select this check box to calculate the statistical value within a
particular region of each image. This parameter is not available
when the block is in running mode.

2-124

2-D Mean (Obsolete)

ROI type
Specify the type of ROI you want to use. Your choices are
Rectangles, Lines, Label matrix, or Binary mask.

ROI portion to process
Specify whether you want to calculate the statistical value for
the entire ROI or just the ROI perimeter. This parameter is only
visible if, for the ROI type parameter, you specify Rectangles.

Output
Specify the block output. The block can output a vector of separate
statistical values for each ROI or a scalar value that represents
the statistical value for all the specified ROIs. This parameter is
not available if, for the ROI type parameter, you select Binary
mask.

Output flag indicating if ROI is within image bounds
If you select this check box, the Flag port appears on the block.
For a description of the Flag port output, see the tables in “ROI
Processing” on page 2-120. This parameter is visible if, for the
ROI type parameter, you select Rectangles or Lines.

Output flag indicating if label numbers are valid
If you select this check box, the Flag port appears on the block.
For a description of the Flag port output, see the tables in “ROI
Processing” on page 2-120. This parameter is visible if, for the
ROI type parameter, you select Label matrix.

The Fixed-point pane of the 2-D Mean dialog box appears as shown in
the following figure.

2-125

2-D Mean (Obsolete)

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of 0.

2-126

2-D Mean (Obsolete)

Output
Choose how to specify the output word length and fraction length:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. This block
requires power-of-two slope and a bias of 0.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the
autoscaling tool in the Fixed-Point Tool. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the
Simulink documentation.

See Also 2-D Autocorrelation Video and Image Processing Blockset
software

2-D Correlation Video and Image Processing Blockset
software

Histogram Video and Image Processing Blockset
software

Median Video and Image Processing Blockset
software

Standard Deviation Video and Image Processing Blockset
software

Variance Video and Image Processing Blockset
software

Maximum Signal Processing Blockset software

Mean Signal Processing Blockset software

2-127

2-D Mean (Obsolete)

Minimum Signal Processing Blockset software

mean MATLAB software

2-128

2-D Median (Obsolete)

Purpose Find median value of each input matrix

Library Statistics

Description
Note The 2-D Median block is obsolete. It may be removed in a future
version of the Video and Image Processing Blockset software. Use the
replacement block Median.

The 2-D Median block outputs the median value of the M-by-N input
matrix.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix
of intensity
values

• Double-precision
floating point

• Single-precision floating
point

• Fixed point

• 8-, 16-, 32-, and 128-bit
signed integer

• 8-, 16-, 32-, and 128-bit
unsigned integer

Yes

Output Median value
of each M-by-N
input matrix

Same as Input port Yes

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

When M is odd, the block sorts the column elements by value, and
outputs the central row of the sorted matrix.

2-129

2-D Median (Obsolete)

s = sort(u(:));
y = s((M+1)/2)

When M is even, the block sorts the column elements by value, and
outputs the average of the two central rows in the sorted matrix.

s = sort(u(:));
y = mean([s(M/2),s(M/2+1)])

Complex inputs are sorted by magnitude squared. For complex value
u = a + bi, the magnitude squared is a2 + b2.

Fixed-Point Data Types

For fixed-point inputs, you can specify accumulator, product output,
and output data types as discussed in “Dialog Box” on page 2-131.
Not all these fixed-point parameters are applicable for all types of
fixed-point inputs. The following table shows when each kind of data
type and scaling is used.

Output Data Type
Accumulator Data
Type

Product Output
Data Type

Even M X X

Odd M X

Odd M and complex X X X

Even M and
complex

X X X

The accumulator and output data types and scalings are used for
fixed-point signals when M is even. The result of the sum performed
while calculating the average of the two central rows of the input matrix
is stored in the accumulator data type and scaling. The total result of
the average is then put into the output data type and scaling.

The accumulator and product output parameters are used for complex
fixed-point inputs. The sum of the squares of the real and imaginary
parts of such an input are formed before the input elements are sorted.

2-130

2-D Median (Obsolete)

The results of the squares of the real and imaginary parts are placed
into the product output data type and scaling. The result of the sum of
the squares is placed into the accumulator data type and scaling.

For fixed-point inputs that are both complex and have even M, the data
types are used in all of the ways described. Therefore, in such cases the
accumulator type is used in two different ways.

Dialog
Box

The Main pane of the 2-D Median dialog box appears as shown in the
following figure.

Sort algorithm
Specify whether the elements of the input are sorted using a
Quick sort or an Insertion sort algorithm.

2-131

2-D Median (Obsolete)

The Fixed-point pane of the 2-D Median dialog box appears as shown
in the following figure.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Note The product output, accumulator, and output parameters
are only used in certain cases. Refer to “Fixed-Point Data Types”
on page 2-130 for more information.

2-132

2-D Median (Obsolete)

Product output
Use this parameter to specify how to designate the product output
word and fraction lengths:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. This
block requires power-of-two slope and a bias of 0.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block:

• When you select Same as product output, these
characteristics match those of the product output

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of 0.

Output
Choose how to specify the output word length and fraction length:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

2-133

2-D Median (Obsolete)

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. This block
requires power-of-two slope and a bias of 0.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the
autoscaling tool in the Fixed-Point Tool. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the
Simulink documentation.

See Also 2-D Autocorrelation Video and Image Processing Blockset software

2-D Correlation Video and Image Processing Blockset software

Histogram Video and Image Processing Blockset software

Mean Video and Image Processing Blockset software

Standard Deviation Video and Image Processing Blockset software

Variance Video and Image Processing Blockset software

Maximum Signal Processing Blockset software

Median Signal Processing Blockset software

Minimum Signal Processing Blockset software

median MATLAB software

2-134

2-D Minimum (Obsolete)

Purpose Find minimum values in an input or sequence of inputs

Library vipobslib

Description
Note The 2-D Minimum block is obsolete. It may be removed in a
future version of the Video and Image Processing Blockset software.
Use the replacement block Minimum.

The 2-D Minimum block identifies the value and/or position of the
smallest element in each column of the input, or tracks the minimum
values in a sequence of inputs over a period of time. The Mode
parameter specifies the block’s mode of operation, and can be set to
Value, Index, Value and Index, or Running.

The Minimum block supports real and complex floating-point and
fixed-point inputs. Fixed-point real inputs can be either signed or
unsigned, while fixed-point complex inputs must be signed. The data
type of the minimum values output by the block match the data type of
the input. The index values output by the block are double when the
input is double, and uint32 otherwise.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of intensity
values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Yes

Rst Scalar value Boolean No

2-135

2-D Minimum (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

Val Minimum value in each
M-by-N input matrix

Same as Input port Yes

Idx Two-element vector of the
form [row index column
index] that represents the
zero-based location of the
minimum value

Same as Input port No

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

Value Mode

When Mode is set to Value, the block computes the minimum value
in each column of the M-by-N input matrix u independently at each
sample time.

val = min(u) % Equivalent MATLAB code

For convenience, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated asM-by-1 column vectors.

The output at each sample time, val, is a 1-by-N vector containing the
minimum value of each column in u.

For complex inputs, the block selects the value in each matrix that has
the minimum magnitude squared as shown in the following figure. For
complex value u = a + bi, the magnitude squared is a2 + b2.

2-136

2-D Minimum (Obsolete)

Index Mode

When Mode is set to Index, the block computes the minimum value in
each column of the M-by-N input matrix u,

[val,idx] = min(u) % Equivalent MATLAB code

and outputs the sample-based 1-by-N index vector, idx. Each value
in idx is an integer in the range [1M] indexing the minimum value
in the corresponding column of u. When inputs to the block are
double-precision values, the index values are double-precision values.
Otherwise, the index values are 32-bit unsigned integer values.

As in Value mode, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated asM-by-1 column vectors.

When a minimum value occurs more than once in a particular column of
u, the computed index corresponds to the first occurrence. For example,
when the input is the column vector [-1 2 3 2 -1]', the computed
index of the minimum value is 1 rather than 5.

Value and Index Mode

When Mode is set to Value and Index, the block outputs both the
vector of minima, val, and the vector of indices, idx.

Running Mode

When Mode is set to Running, the block tracks the minimum value of
each channel in a time-sequence of M-by-N inputs. For sample-based
inputs, the output is a sample-based M-by-N matrix with each element
yij containing the minimum value observed in element uij for all inputs
since the last reset. For frame-based inputs, the output is a frame-based
M-by-N matrix with each element yij containing the minimum value
observed in the jth column of all inputs since the last reset, up to and
including element uij of the current input.

As in the other modes, length-M 1-D vector inputs and sample-based
length-M row vector inputs are both treated asM-by-1 column vectors.

2-137

2-D Minimum (Obsolete)

Resetting the Running Minimum

The block resets the running minimum whenever a reset event is
detected at the optional Rst port. The rate of the reset signal must be a
positive integer multiple of the rate of the data signal input.

When the block is reset for sample-based inputs, the running minimum
for each channel is initialized to the value in the corresponding channel
of the current input. For frame-based inputs, the running minimum for
each channel is initialized to the earliest value in each channel of the
current input.

You specify the reset event by the Reset port parameter:

• None disables the Rst port.

• Rising edge— Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or 0

- Rises from 0 to a positive value, where the rise is not a continuation
of a rise from a negative value to 0 (see the following figure)

��������	��
��������	��

��������	�
���
���
���
��������
��������
��������������������
��������������
������������������	��

��������	��

• Falling edge— Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or 0

2-138

2-D Minimum (Obsolete)

- Falls from 0 to a negative value, where the fall is not a continuation
of a fall from a positive value to 0 (see the following figure)

���������	�����������	��

�����������
���
���
���
��������
��������
��������������������
��������������
����������

���������	��
���������	��

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described previously)

• Non-zero sample— Triggers a reset operation at each sample time
that the Rst input is not 0

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when the
block detects a reset event, there is a one-sample delay at the reset
port rate before the block applies the reset. For more information
on latency and the Simulink tasking modes, see “Configuration
Parameters Dialog Box” in the Simulink documentation.

Fixed-Point Data Types

The parameters on the Fixed-point pane of the dialog box are only
used for complex fixed-point inputs. The sum of the squares of the real
and imaginary parts of such an input are formed before a comparison is
made, as described in “Value Mode” on page 2-136. The results of the
squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into

2-139

2-D Minimum (Obsolete)

the accumulator data type. These parameters are ignored for other
types of inputs.

Dialog
Box

The Main pane of the 2-D Minimum dialog box appears as shown in
the following figure.

Mode
Specify the block’s mode of operation:

• Value— Output the minimum value of each input matrix

• Index— Output the zero-based index location of the minimum
value

• Value and Index — Output both the value and the index
location

2-140

2-D Minimum (Obsolete)

• Running — Track the minimum value of the input sequence
over time

Index base
Specify whether the index is zero based or one based.

Find the maximum value of
Specify whether the block should find the maximum of the entire
input or of each row or column.

Reset port
Specify the reset event detected at the Rst input port when you
select Running for the Mode parameter. The rate of the reset
signal must be a positive integer multiple of the rate of the data
signal input. This parameter is only visible if, for the Mode
parameter, you select Running.

The Fixed-point pane of the 2-D Minimum dialog box appears as
shown in the following figure.

2-141

2-D Minimum (Obsolete)

Note The parameters on the Fixed-point pane are only used for
complex fixed-point inputs. The sum of the squares of the real and
imaginary parts of such an input are formed before a comparison is
made, as described in “Value Mode” on page 2-136. The results of the
squares of the real and imaginary parts are placed into the product
output data type. The result of the sum of the squares is placed into
the accumulator data type. These parameters are ignored for other
types of inputs.

Rounding mode
Select the rounding mode for fixed-point operations.

2-142

2-D Minimum (Obsolete)

Overflow mode
Select the overflow mode for fixed-point operations.

Product output
Use this parameter to specify how to designate the product output
word and fraction lengths resulting from a complex-complex
multiplication in the block. Refer to “Multiplication Data Types”
in the Signal Processing Blockset documentation for more
information:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. This
block requires power-of-two slope and a bias of 0.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in
the block. Refer to “Multiplication Data Types” in the Signal
Processing Blockset documentation for more information:

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of 0.

2-143

2-D Minimum (Obsolete)

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the
autoscaling tool in the Fixed-Point Tool. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the
Simulink documentation.

2-144

2-D Standard Deviation (Obsolete)

Purpose Find standard deviation of each input matrix

Library Statistics

Description

Note The 2-D Standard Deviation block is obsolete. It may be removed
in a future version of the Video and Image Processing Blockset software.
Use the replacement block Standard Deviation.

The 2-D Standard Deviation block computes the standard deviation of
each M-by-N input matrix or of a sequence of inputs over time. Use the
Running standard deviation check box to select between the block’s
basic and running operation. This block’s functionality is different
from the Signal Processing Blockset Standard Deviation block, which
computes the standard deviation of each column in the input.

2-145

2-D Standard Deviation (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

Input / I Vector or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

Yes

Rst Signal that triggers a
reset event

• Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned
integer

No

ROI • Rectangle — [r c
height width]

• Lines — [r1 c1 r2 c2],
where r1 and c1 are
the row and column
coordinates of the
beginning of the line
and r2 and c2 are
the row and column
coordinates of the end
of the line.

• Binary mask —
Binary image matrix
that enables you to
specify which pixels to
highlight.

Rectangles and lines —

• Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned
integer

Binary mask —

• Boolean

No

2-146

2-D Standard Deviation (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

Label Matrix where pixels
equal to 0 represent the
background, pixels equal
to 1 represent the first
object, pixels equal to
2 represent the second
object, and so on.

• 8-, 16-, and 32-bit unsigned
integer

No

Label
Numbers

Vector containing the
label numbers for the
regions for which the
block will compute the
statistics.

• 8-, 16-, and 32-bit unsigned
integer

No

Output /
Out

Without ROI processing
— Standard deviation
of each M-by-N input
matrix, or the standard
deviation of a sequence
of M-by-N inputs.

With ROI processing
— Vector of separate
statistical values for
each ROI or a scalar
value that represents the
statistical value for all
specified ROIs.

Same as Input port Yes

Flag Boolean value that
indicates whether the
ROI is within the image
bounds or the label
number is within the
label matrix.

Boolean No

2-147

2-D Standard Deviation (Obsolete)

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

Basic Operation

If you clear the Running standard deviation check box, the block
outputs the standard deviation of each M-by-N input matrix.

For purely real or purely imaginary inputs, the standard deviation is
the square root of the variance and is given by the following equation:

y

u

M N

ij
j

N

i

M

= =

−

× −
==
∑∑

σ

μ()2

11

1

where µ is the mean of the input matrix u. For complex inputs, the
block outputs the total standard deviation of the input matrix, which is
the square root of the total variance.

σ σ σ= +Re Im
2 2

The total standard deviation is not equal to the sum of the real and
imaginary standard deviations.

Running Operation

If you select the Running standard deviation check box, the block
computes the standard deviation of a sequence of M-by-N inputs.

For example, suppose A is the first input to the block and B is the
second and current input to the block, where

A =
⎡

⎣
⎢

⎤

⎦
⎥

1 3
2 4

and

B =
⎡

⎣
⎢

⎤

⎦
⎥

5 6
7 3

2-148

2-D Standard Deviation (Obsolete)

The block computes the standard deviation as

std std
std std

([,]) ([,])
([,]) ([,])

1 5 3 6
2 7 4 3

⎡

⎣
⎢

⎤

⎦
⎥

and outputs

2 8284 2 1213
3 5355 0 7071
. .
. .

⎡

⎣
⎢

⎤

⎦
⎥

For the next input, the block computes the standard deviation for each
element of the first three inputs, and so on.

Resetting the Running Standard Deviation

The block resets the running standard deviation whenever a reset event
is detected at the optional Rst port. The reset signal rate must be a
positive integer multiple of the rate of the data signal input.

You specify the reset event using the Reset port parameter:

• None — Disables the Rst port

• Rising edge— Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or 0

- Rises from 0 to a positive value, where the rise is not a continuation
of a rise from a negative value to 0 (see the following figure)

2-149

2-D Standard Deviation (Obsolete)

��������	��
��������	��

��������	�
���
���
���
��������
��������
��������������������
��������������
������������������	��

��������	��

• Falling edge— Triggers a reset operation when the Rst input does
one of the following:

- Falls from a positive value to a negative value or 0

- Falls from 0 to a negative value, where the fall is not a continuation
of a fall from a positive value to 0 (see the following figure)

���������	�����������	��

�����������
���
���
���
��������
��������
��������������������
��������������
����������

���������	��
���������	��

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described previously).

• Non-zero sample— Triggers a reset operation at each sample time
that the Rst input is not 0.

2-150

2-D Standard Deviation (Obsolete)

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when the
block detects a reset event, there is a one-sample delay at the reset
port rate before the block applies the reset. For more information
on latency and the Simulink tasking modes, see“Configuration
Parameters Dialog Box” in the Simulink documentation.

ROI Processing

To calculate the statistical value within a particular region of each
image, select the Enable ROI processing check box. This option is not
available when the block is in running mode.

Use the ROI type parameter to specify whether the ROI is a rectangle,
line, label matrix, or binary mask. A binary mask is a binary image
that enables you to specify which pixels to highlight, or select. In a label
matrix, pixels equal to 0 represent the background, pixels equal to 1
represent the first object, pixels equal to 2 represent the second object,
and so on. When the ROI type parameter is set to Label matrix, the
Label and Label Numbers ports appear on the block. Use the Label
Numbers port to specify the objects in the label matrix for which the
block calculates statistics. The input to this port must be a vector
of scalar values that correspond to the labeled regions in the label
matrix. For more information about the format of the input to the ROI
port when the ROI is a rectangle or a line, see the Draw Shapes block
reference page.

For rectangular ROIs, use the ROI portion to process parameter to
specify whether to calculate the statistical value for the entire ROI
or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can
output separate statistical values for each ROI or the statistical value
for all specified ROIs. This parameter is not available if, for the ROI
type parameter, you select Binary mask.

If, for the ROI type parameter you select Rectangles or Lines, the
Output flag indicating if ROI is within image bounds check box

2-151

2-D Standard Deviation (Obsolete)

appears in the dialog box. If you select this check box, the Flag port
appears on the block. The following tables describe the Flag port output
based on the block parameters.

Output = Individual statistics for each ROI

Flag
Port
Output

Description

0 ROI is completely outside the input image.

1 ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag
Port
Output

Description

0 All ROIs are completely outside the input image.

1 At least one ROI is completely or partially inside the
input image.

If the ROI is partially outside the image, the block only computes the
statistical values for the portion of the ROI that is within the image.

If, for the ROI type parameter you select Label matrix, the Output
flag indicating if input label numbers are valid check box appears
in the dialog box. If you select this check box, the Flag port appears on
the block. The following tables describe the Flag port output based
on the block parameters.

2-152

2-D Standard Deviation (Obsolete)

Output = Individual statistics for each ROI

Flag Port
Output

Description

0 Label number is not in the label matrix.

1 Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port
Output

Description

0 None of the label numbers are in the label matrix.

1 At least one of the label numbers is in the label matrix.

2-153

2-D Standard Deviation (Obsolete)

Dialog
Box

The 2-D Standard Deviation dialog box appears as shown in the
following figure.

Running standard deviation
Select this check box to enable the block’s running operation.

Reset port
Determines the reset event that causes the block to reset the
running standard deviation. The reset signal rate must be a
positive integer multiple of the rate of the data signal input. This
parameter is available if you select the Running standard
deviation check box.

Enable ROI processing
Select this check box to calculate the statistical value within a
particular region of each image. This parameter is not available
when the block is in running mode.

2-154

2-D Standard Deviation (Obsolete)

ROI type
Specify the type of ROI to use. Your choices are Rectangles,
Lines, Label matrix, or Binary mask.

ROI portion to process
Specify whether you want to calculate the statistical value for
the entire ROI or just the ROI perimeter. This parameter is only
visible if, for the ROI type parameter, you specify Rectangles.

Output
Specify the block output. The block can output a vector of separate
statistical values for each ROI or a scalar value that represents
the statistical value for all the specified ROIs. This parameter is
not available if, for the ROI type parameter, you select Binary
mask.

Output flag indicating if ROI is within image bounds
If you select this check box, the Flag port appears on the block.
For a description of the Flag port output, see the tables in “ROI
Processing” on page 2-151. This parameter is visible if, for the
ROI type parameter, you select Rectangles or Lines.

Output flag indicating if label numbers are valid
If you select this check box, the Flag port appears on the block.
For a description of the Flag port output, see the tables in “ROI
Processing” on page 2-151. This parameter is visible if, for the
ROI type parameter, you select Label matrix.

See Also 2-D Autocorrelation Video and Image Processing Blockset
software

2-D Correlation Video and Image Processing Blockset
software

Histogram Video and Image Processing Blockset
software

Mean Video and Image Processing Blockset
software

2-155

2-D Standard Deviation (Obsolete)

Median Video and Image Processing Blockset
software

Variance Video and Image Processing Blockset
software

Maximum Signal Processing Blockset software

Minimum Signal Processing Blockset software

Standard Deviation Signal Processing Blockset software

std MATLAB software

2-156

2-D Variance (Obsolete)

Purpose Compute variance of each input matrix

Library Statistics

Description
Note The 2-D Variance block is obsolete. It may be removed in a
future version of the Video and Image Processing Blockset software.
Use the replacement block Variance.

The 2-D Variance block computes the variance of each M-by-N input
matrix or of a sequence of inputs over time. Use the Running variance
check box to choose between the block’s basic and running operation.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input / I Vector or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

Yes

Rst Signal that triggers a
reset event

• Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

2-157

2-D Variance (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

ROI • Rectangle — [r c height
width]

• Lines — [r1 c1 r2 c2],
where r1 and c1 are
the row and column
coordinates of the
beginning of the line
and r2 and c2 are
the row and column
coordinates of the end
of the line.

• Binary mask —
Binary image matrix
that enables you to
specify which pixels to
highlight.

• Rectangles and lines

- Double-precision floating
point

- Single-precision floating
point

- Boolean

- 8-, 16-, and 32-bit signed
integer

- 8-, 16-, and 32-bit unsigned
integer

• Binary mask

- Boolean

No

Label Matrix where pixels
equal to 0 represent the
background, pixels equal
to 1 represent the first
object, pixels equal to
2 represent the second
object, and so on.

• 8-, 16-, and 32-bit unsigned
integer

No

Label
Numbers

Vector containing the
label numbers for the
regions for which the
block will compute the
statistics.

• 8-, 16-, and 32-bit unsigned
integer

No

2-158

2-D Variance (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

Output/Out Without ROI processing
— Variance of each
M-by-N input matrix or
the variance for each
element in a sequence of
M-by-N inputs.

With ROI processing —
Vector of separate
statistical values for
each ROI or a scalar
value that represents the
statistical value for all
specified ROIs.

Same as Input port Yes

Flag Boolean value that
indicates whether the
ROI is within the image
bounds or the label
number is within the
label matrix.

Boolean No

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

Basic Operation

If you clear the Running variance check box, the block outputs the
variance of each M-by-N input matrix. A scalar input generates a
zero-valued output.

For purely real or purely imaginary inputs, the variance of a M-by-N
matrix is the square of the standard deviation:

2-159

2-D Variance (Obsolete)

y

u

u

M N

M N

ij

ij
j

N

i

M

j

N

i

M

= =

−

−

==

==

∑∑
∑∑

σ2

2 11

2

11

1

*

*

For complex inputs, the variance is given by the following equation:

σ σ σ2 2 2= +Re Im

When the input values are double-precision floating point, the
equivalent MATLAB code is var(u(:)), where u is the input.

Running Operation

If you select the Running variance check box, the block computes the
variance of a sequence of M-by-N inputs.

For example, suppose A is the first input to the block and B is the
second and current input to the block, where

A =
⎡

⎣
⎢

⎤

⎦
⎥

1 3
2 4

and

B =
⎡

⎣
⎢

⎤

⎦
⎥

5 6
7 3

The block computes the variance,

var([,]) var([,])
var([,]) var([,])

1 5 3 6
2 7 4 3

⎡

⎣
⎢

⎤

⎦
⎥

2-160

2-D Variance (Obsolete)

and outputs

8 4 5
12 5 0 5

.
. .

⎡

⎣
⎢

⎤

⎦
⎥

For the next input, the block computes the variance for each element of
the first three inputs, and so on.

Resetting the Running Variance

The block resets the running variance whenever a reset event is
detected at the optional Rst port. The reset signal rate must be a
positive integer multiple of the rate of the data signal input.

You specify the reset event using the Reset port parameter:

• None — Disables the Rst port

• Rising edge— Triggers a reset operation when the Rst input does
one of the following:

- Rises from a negative value to a positive value or 0

- Rises from 0 to a positive value, where the rise is not a continuation
of a rise from a negative value to 0 (see the following figure)

��������	��
��������	��

��������	�
���
���
���
��������
��������
��������������������
��������������
������������������	��

��������	��

• Falling edge— Triggers a reset operation when the Rst input does
one of the following:

2-161

2-D Variance (Obsolete)

- Falls from a positive value to a negative value or 0

- Falls from 0 to a negative value, where the fall is not a continuation
of a fall from a positive value to 0 (see the following figure)

���������	�����������	��

�����������
���
���
���
��������
��������
��������������������
��������������
����������

���������	��
���������	��

• Either edge — Triggers a reset operation when the Rst input is a
Rising edge or Falling edge (as described previously)

• Non-zero sample— Triggers a reset operation at each sample time
that the Rst input is not 0

Note When running simulations in the Simulink MultiTasking
mode, reset signals have a one-sample latency. Therefore, when the
block detects a reset event, there is a one-sample delay at the reset
port rate before the block applies the reset. For more information
on latency and the Simulink tasking modes, see“Configuration
Parameters Dialog Box” in the Simulink documentation.

ROI Processing

To calculate the statistical value within a particular region of each
image, select the Enable ROI processing check box. This option is not
available when the block is in running mode.

2-162

2-D Variance (Obsolete)

Use the ROI type parameter to specify whether the ROI is a binary
mask, label matrix, rectangle, or line.

• A binary mask is a binary image that enables you to specify which
pixels to highlight, or select.

• In a label matrix, pixels equal to 0 represent the background, pixels
equal to 1 represent the first object, pixels equal to 2 represent the
second object, and so on. When the ROI type parameter is set to
Label matrix, the Label and Label Numbers ports appear on the
block. Use the Label Numbers port to specify the objects in the label
matrix for which the block calculates statistics. The input to this
port must be a vector of scalar values that correspond to the labeled
regions in the label matrix.

• For more information about the format of the input to the ROI port
when the ROI is a rectangle or a line, see the Draw Shapes reference
page.

Note For rectangular ROIs, use the ROI portion to process
parameter to specify whether to calculate the statistical value for the
entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can
output separate statistical values for each ROI or the statistical value
for all specified ROIs. This parameter is not available if, for the ROI
type parameter, you select Binary mask.

If, for the ROI type parameter you select Rectangles or Lines, the
Output flag indicating if ROI is within image bounds check box
appears in the dialog box. If you select this check box, the Flag port
appears on the block. The following tables describe the Flag port output
based on the block parameters.

2-163

2-D Variance (Obsolete)

Output = Individual Statistics for Each ROI

Flag
Port
Output

Description

0 ROI is completely outside the input image.

1 ROI is completely or partially inside the input image.

Output = Single Statistic for All ROIs

Flag
Port
Output

Description

0 All ROIs are completely outside the input image.

1 At least one ROI is completely or partially inside the
input image.

If the ROI is partially outside the image, the block only computes the
statistical values for the portion of the ROI that is within the image.

If, for the ROI type parameter you select Label matrix, the Output
flag indicating if input label numbers are valid check box appears
in the dialog box. If you select this check box, the Flag port appears on
the block. The following tables describe the Flag port output based
on the block parameters.

Output = Individual Statistics for Each ROI

Flag
Port
Output

Description

0 Label number is not in the label matrix.

1 Label number is in the label matrix.

2-164

2-D Variance (Obsolete)

Output = Single Statistic for All ROIs

Flag
Port
Output

Description

0 None of the label numbers are in the label matrix.

1 At least one of the label numbers is in the label matrix.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D Variance
block for fixed-point signals.

)�*+�,-./
��01-�2/.

)�*+�,-./
��01-�2/.

�../2

�../2

.���./2

0-%,2�',(2

.���./2

�����
������#��

������
�������
�����&�3�����
�������
������#��

������
����
������#��

������
����
������#��

(�����
������#��

�����
������#��

������
����
������#��

������
����
������#��

������
����
������#��

������
�������
�����&���&�3�����
�������
������#��

uij

uij

uij
2

uij∑∑ 2

u
u

M Nij
ij∑∑ ∑∑−

2
2

*

yi

uij∑∑
uij∑∑ 2

M N* M N* − 1
u

M N
ij∑∑ 2

*

The results of the magnitude squared calculations in the preceding
diagram are in the product output data type. You can set the
accumulator, product output, and output data types in the dialog box.

2-165

2-D Variance (Obsolete)

Dialog
Box

The Main pane of the 2-D Variance dialog box appears as shown in
the following figure.

Running variance
Select this check box to enable the block’s running operation.

Reset port
Determines the reset event that causes the block to reset the
running variance. The reset signal rate must be a positive integer
multiple of the rate of the data signal input. This parameter is
visible only if you select the Running variance check box.

Enable ROI processing
Select this check box to calculate the statistical value within a
particular region of each image. This parameter is not available
when the block is in running mode.

2-166

2-D Variance (Obsolete)

ROI type
Specify the type of ROI to use. Your choices are Rectangles,
Lines, Label matrix, or Binary mask.

ROI portion to process
Specify whether to calculate the statistical value for the entire
ROI or just the ROI perimeter. This parameter is only visible if,
for the ROI type parameter, you specify Rectangles.

Output
Specify the block output. The block can output a vector of separate
statistical values for each ROI or a scalar value that represents
the statistical value for all the specified ROIs. This parameter is
not available if, for the ROI type parameter, you select Binary
mask.

Output flag indicating if ROI is within image bounds
If you select this check box, the Flag port appears on the block.
For a description of the Flag port output, see the tables in “ROI
Processing” on page 2-162. This parameter is visible if, for the
ROI type parameter, you select Rectangles or Lines.

Output flag indicating if label numbers are valid
If you select this check box, the Flag port appears on the block.
For a description of the Flag port output, see the tables in “ROI
Processing” on page 2-162. This parameter is visible if, for the
ROI type parameter, you select Label matrix.

The Fixed-point pane of the 2-D Variance dialog box appears as shown
in the following figure:

2-167

2-D Variance (Obsolete)

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Note Refer to “Fixed-Point Data Types” on page 2-165 for more
information on how the product output, accumulator, and output
data types are used in this block.

Input-squared product
Use this parameter to specify how to designate the input-squared
product word and fraction lengths:

2-168

2-D Variance (Obsolete)

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the input-squared
product, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the input-squared product.
This block requires power-of-two slope and a bias of 0.

Input-sum-squared product
Use this parameter to specify how to designate the
input-sum-squared product word and fraction lengths:

• When you select Same as input-squared product, these
characteristics match those of the input-squared product.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the input-sum-squared
product, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the input-sum-squared
product. This block requires power-of-two slope and a bias of 0.

Note To compute the required fixed-point settings for this
parameter, pick your brightest image and sum all the pixel values
across the image. Then, square the value. Specify a word length
and fraction length so that the resulting value fits within the
Input-sum-squared product data type without overflow. This
specification might require picking a large scaling factor (LSB

weight 2L , L>1), or, in other words, setting a negative fraction
length.

2-169

2-D Variance (Obsolete)

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block:

• When you select Same as input-squared product, these
characteristics match those of the input-squared product.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of 0.

Output
Choose how to specify the output word length and fraction length:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. This block
requires power-of-two slope and a bias of 0.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the
autoscaling tool in the Fixed-Point Tool. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the
Simulink documentation.

2-170

2-D Variance (Obsolete)

See Also 2-D Autocorrelation Video and Image Processing Blockset
software

2-D Correlation Video and Image Processing Blockset
software

Histogram Video and Image Processing Blockset
software

Mean Video and Image Processing Blockset
software

Median Video and Image Processing Blockset
software

Standard Deviation Video and Image Processing Blockset
software

Maximum Signal Processing Blockset software

Minimum Signal Processing Blockset software

Variance Signal Processing Blockset software

var MATLAB software

2-171

Apply Geometric Transformation

Purpose Apply projective or affine transformation to an image

Library Geometric Transformations

Description

Use the Apply Geometric Transformation block to apply projective or
affine transform to an image. You can use this block to transform the
entire image or portions of the image with either polygon or rectangle
Regions of Interest (ROIs).

Port Description

Image M-by-N or M-by-N-by-P input matrix. M: Number of rows in the image.

N: Number of columns in the image.

P: Number of color planes in the image.

TForm When you set the Transformation matrix source parameter to Input port,
the TForm input port accepts:

• 2-by-3 matrix (affine transform) or 6-by-Q matrix (multiple affine
transforms)

• 3-by-3 matrix (projective transform) or 9-by-Q matrix (multiple projective
transforms)

Q: Number of transformations.

ROI When you set the ROI source parameter to Input port, the ROI input port
accepts:
• 4-element vector rectangle ROI

2-172

Apply Geometric Transformation

Port Description

• 2L-element vector polygon ROI

• 4-by-R matrix for multiple rectangle ROIs

• 2L-by-R matrix for multiple polygon ROIs

R: Number of Region of Interests (ROIs).

L (L ≥ 3): Number of vertices in a polygon ROI.

Transformations

The size of the transformation matrix will dictate the transformation
type. See the table above for details.

Affine Transformation

For affine transformation, the value of the pixel located at ˆ, ˆx y T[] in the

output image, is determined by the value of the pixel located at x y T,[]
in the input image. The relationship between the input and the output
point locations is defined by the following equations:

ˆ
ˆ
x xh yh h
y xh yh h

= + +
= + +

⎧
⎨
⎩

1 2 3

4 5 6

where h1, h2, ... h6, are transformation coefficients.

If you use one transformation, the transformation coefficients must be
arranged as a 2-by-3 matrix as in:

H
h h h
h h h

=
⎡

⎣
⎢

⎤

⎦
⎥

1 2 3

4 5 6

or in a 6-by-1 vector as in H h h h h h h T= []1 2 3 4 5 6 .

If you use more than one transformation, the transformation coefficients
must be arranged as a 6-by-Q matrix, where each column has the

2-173

Apply Geometric Transformation

format of H h h h h h h T= []1 2 3 4 5 6 , and Q is the number of
transformations as in:

H

h h h
h h h

h h h

Q

Q

Q

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

11 21 1

12 22 2

16 26 6

...

...
.

...

Projective Transformation
For projective transformation, the relationship between the input and
the output points is defined by the following equations:

ˆ

ˆ

x
xh yh h
xh yh h

y
xh yh h
xh yh h

=
+ +
+ +

=
+ +
+ +

⎧

⎨
⎪⎪

⎩
⎪
⎪

1 2 3

7 8 9

4 5 6

7 8 9

where h1, h2, ... h9, are transformation coefficients.

If you use one transformation, the transformation coefficients must be
arranged as a 3-by-3 matrix as in:

H
h h h
h h h
h h h

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 3

4 5 6

7 8 9

or in a 9-by-1 vector as in, H h h h h h h h h h T= []1 2 3 4 5 6 7 8 9 .

If you use more than one transformation, the transformation coefficients
must be arranged as a 9-by-Q matrix, where each column has the

format of
H h h h h h h h h h T= []1 2 3 4 5 6 7 8 9 , and Q is the

number of transformations. For example,

2-174

Apply Geometric Transformation

H

h h h
h h h

h h h

Q

Q

Q

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

11 21 1

12 22 2

29 99

...

...
.

...

Region of Interest

The Apply Geometric Transformation block can apply transformations
to the entire image, or a portion (or portions) of an image specified by
ROIs.

Region of Interest (ROI) Types
Two types of ROIs are supported. ROIs can be one or more rectangles
or polygons.

A rectangle ROI is specified by its top-left corner and its size. If you

specify one ROI, it must be a 4-element vector of format r c h w T, , ,[] .
If you specify more than one ROI, it must be a 4-by-R matrix such that

each column is r c h w T, , ,[] .

A polygon ROI is specified by the vertices of the polygon in clockwise
or counter-clockwise order, with at least three or more vertices. If you
specify one ROI of L vertices, it must be a 2L-element vector of format

r c r c rL cL T1 1 2 2, , , , ... ,[] . If you specify more than one ROI, it
must be a 2L-by-R matrix, where now L is the maximum number of
vertices in the ROIs. For ROI with vertices fewer than L, its last vertex
can be repeated to form a vector or 2L. See “Defining Shapes to Draw”
on page 2-337 for details.

ROI Processing
The transformations will be applied on the whole image, or on specified
multiple ROIs. The table below outlines how transformation matrices
are handled with an entire image and with single and multiple ROIs.

2-175

Apply Geometric Transformation

Number of
Transformation
Matrices

Region of Interest

One
transformation
matrix

You can apply the transformation on the entire image, single ROI or
multiple ROIs.

Multiple
transformation
matrices

• You can apply multiple transformation matrices on one ROI or on
the entire image. The transformations are done in the order they
are entered in the TForm.

• You can apply multiple transformation matrices on multiple
ROIs. Each transformation matrix is applied to one ROI. The first
transformation matrix specified is applied to the first ROI specified.
The second transformation matrix is applied to the second ROI
specified, and so on. The number of transformation matrices must
be equal to the number of ROIs.

Quadratic Approximation Mode for Projective
Transformation

Projective Transformation block provides an approximation mode which
reduces the number of pixels requiring division calculations [1]. The
accuracy of the approximation to determine pixel locations is specified
by the user in the Error tolerance parameter.

Dialog Box

The Main pane of the Apply Geometric Transformation dialog box
appears as shown in the following figure.

2-176

Apply Geometric Transformation

Transformation matrix source
Specify input matrix source, either Specified via dialog, or
Input port. If you select Specify via dialog, you can enter the
transformation matrix parameters in the parameter that appear with
this selection.

Transformation matrix
Specify a 2-by-3, 3-by-3, 6-by-Q,or a 9-by-Q matrix. This option appears
when you set Transformation matrix source to Specified via
dialog.

Interpolation method for calculating pixel value(s)
Specify interpolation method, either Nearest neighbor, Bilinear, or
Bicubic interpolation to calculate output pixel values. See Geometric

2-177

Apply Geometric Transformation

Transformation Interpolation Methods for an overview of these
methods.

Background fill value
Specify the value of the pixels that are outside of the input image. Use
either a scalar value of P-element vector.

Output image size and position
Specify the output image size to be either Same as input image, or
Specify via dialog. If you select to Specify via dialog, you can
specify the bounding box in the size and location parameters that
appear with this selection.

Size [height width]
Specify the height and width for the output image size as[height
width]. You can specify this parameter, along with the Location of the
upper left corner [row column] parameter when you set the Output
image size and position parameter is set to Specify via dialog.

Location of the upper left corner [row col]
Specify the row and column location for the upper left corner of the
output image. You can specify this parameter, along with the Size
[height width] parameter, when you set the Output image size and
position parameter to Specify via dialog.

Process pixels in
Specify the region to process pixels in. Specify Whole input image,
Rectangle ROI, or Polygon ROI. If you select Rectangle ROI, or
Polygon ROI the ROI source parameter becomes available.

ROI source
Specify the source for the region of interest (ROI), either Specify via
dialog or Input port. This parameter is available when you set the
Process pixels in parameter to either Rectangle ROI, or Polygon
ROI.

Location and size of rectangle ROI [row col height width]
Specify a 4-element vector or 4-by-R matrix, (where R represents the
number of ROIs). This parameter is available when the Process pixels
in parameter is set to Rectangle ROI.

2-178

Apply Geometric Transformation

Vertices of polygon ROI [r1 c1 r2 c2 ... rn cn]
Specify a 2L-element vector or 2L-by-R matrix, (where L is the number
of vertices in a polygon and R represents the number of ROIs).
This parameter becomes available when you set Process pixels in
parameter to Polygon ROI.

Output flag indicating if any part of ROI is outside input image
Select the Output flag indicating if any part of ROI is outside
input image check box to enable this output port on the Apply
Geometric Transformation block.

For projective transformation, use quadratic approximation to
calculate pixel locations
Specify whether to use an exact computation or an approximation for
the projective transformation. If you select this option, you can enter an
error tolerance in the Error tolerance (in pixels) parameter.

Error tolerance (in pixels)
Specify the maximum error tolerance in pixels. This parameter becomes
available when you select For projective transformation, use
quadratic approximation to calculate pixel locations check box.

Output flag indicating if any transformed pixels were clipped
Select the Output flag indicating if any transformed pixels were
clipped check box to enable this output port on the Apply Geometric
Transformation block. Clipping occurs when any of the transformed
pixels fall outside of the output image.

Examples

“Apply a Projective
Transformation to an Image”
on page 2-180

A simple model using the Apply Geometric Transformation
block.

“Create an Image of a Cube
using Three Regions of
Interest” on page 2-180

A model which uses the Apply Geometric Transformation
block to create an image of a cube using ROIs.

2-179

Apply Geometric Transformation

Apply a Projective Transformation to an Image

The Simple projective transformation model doc_vipApplyGeo_proj,
uses the Apply Geometric Transformation block, two Constant
blocks and twoVideo Viewer blocks to illustrate a basic model. The
transformation matrix determines a projective transformation and is
applied to the entire input image. The input image is a checker board.
The steps taken to run this model were:

1 Add two Constant blocks for the input image and the transformation
matrix. Set the Constant value parameters for the constant blocks
as follows:

• for the input image, "checker_board", and

• for the transformation matrix,[0.06 -0.15 15; 0.04 0.1 2;
-0.01 0 1]

2 Add two Video Viewer blocks, connecting one directly to the input
image output port, and the other one to the Apply Geometric
Transformation output port.

Create an Image of a Cube using Three Regions of Interest

This example shows how to apply affine transformation on multiple
ROIs of an image. It also sets the background color of the output image
to a solid color purple. The input image, transformation matrix, and
ROI vertices are provided to the Apply Geometric Transformation
block via constant blocks. Video viewers are used to view the original
image and the output image created. Open this model by typing
doc_vipApplyGeo_roi at the MATLAB command prompt. The steps
taken to run this model was:

1 Change the Process pixels in parameter to Polygon ROI.

2 Change the Background fill value to [0.5 0.5 0.75]

3 Add three Constant blocks for the input image, transformation
matrix, and ROI vertices. Set the Constant value parameters for
the three blocks as follows:

2-180

Apply Geometric Transformation

• For the input image, "checker_board"

• For the transformation matrix,[1 0 -15 0 1 15; 0.4082 0 15
-0.4082 1.0204 35; 1 -0.4082 5.4082 0 0.4082 44.5918]',
and

• For the polygon ROI, [50 0 50 49 99 49 99 0; 0 0 0 49 49
49 49 0; 50 50 50 99 99 99 99 50]'.

4 Add two Video Viewer blocks, connecting one directly to the Constant
block containing the input image. The other, to the Apply Geometric
Transformation output port.

References [1] George Wolberg, “Digital Image Warping”, IEEE Computer Society
Press, 3rd edition, 1994.

Richard Hartley and Andrew Zisserman, “Multiple View Geometry in
Computer Vision“, Cambridge University Press, 2nd edition, 2003.

Supported
Data
Types

Port Supported Data Types

Image • Double-precision floating point

• Single-precision floating point

TForm • Double-precision floating point

• Single-precision floating point

ROI • Double-precision floating point

• Single-precision floating point

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

Output Same as input

2-181

Apply Geometric Transformation

Port Supported Data Types

Err_roi Boolean

Err_clip Boolean

See Also imtransform Image Processing Toolbox

Estimate Geometric
Transformation

Video and Image Processing Blockset

Trace Boundaries Video and Image Processing Blockset

Blob Analysis Video and Image Processing Blockset

Video and Image
Processing Demos

Video and Image Processing Blockset

2-182

Autothreshold

Purpose Convert intensity image to binary image

Library Conversions

vipconversions

Description The Autothreshold block converts an intensity image to a binary image
using a threshold value computed using Otsu’s method.

This block computes this threshold value by splitting the histogram of
the input image such that the variance of each pixel group is minimized.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating
point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

BW Scalar, vector, or matrix that
represents a binary image

Boolean No

Th Threshold value Same as I port No

EMetric Effectiveness metric Same as I port No

Use the Thresholding operator parameter to specify the condition
the block places on the input values. If you select > and the input value
is greater than the threshold value, the block outputs 1 at the BW port;
otherwise, it outputs 0. If you select <= and the input value is less

2-183

Autothreshold

than or equal to the threshold value, the block outputs 1; otherwise,
it outputs 0.

Select the Output threshold check box to output the calculated
threshold values at the Th port.

Select the Output effectiveness metric check box to output values
that represent the effectiveness of the thresholding at the EMetric
port. This metric ranges from 0 to 1. If every pixel has the same value,
the effectiveness metric is 0. If the image has two pixel values or the
histogram of the image pixels is symmetric, the effectiveness metric is 1.

If you clear the Specify data range check box, the block assumes that
floating-point input values range from 0 to 1. To specify a different
data range, select this check box. The Minimum value of input and
Maximum value of input parameters appear in the dialog box. Use
these parameters to enter the minimum and maximum values of your
input signal.

Use the When data range is exceeded parameter to specify the
block’s behavior when the input values are outside the expected range.
The following options are available:

• Ignore— Proceed with the computation and do not issue a warning
message. If you choose this option, the block performs the most
efficient computation. However, if the input values exceed the
expected range, the block produces incorrect results.

• Saturate — Change any input values outside the range to the
minimum or maximum value of the range and proceed with the
computation.

• Warn and saturate— Display a warning message in the MATLAB
Command Window, saturate values, and proceed with the
computation.

• Error— Display an error dialog box and terminate the simulation.

If you clear the Scale threshold check box, the block uses the
threshold value computed by Otsu’s method to convert intensity images

2-184

Autothreshold

into binary images. If you select the Scale threshold check box, the
Threshold scaling factor appears in the dialog box. Enter a scalar
value. The block multiplies this scalar value with the threshold value
computed by Otsu’s method and uses the result as the new threshold
value.

Fixed-Point Data Types

The following diagram shows the data types used in the Autothreshold
block for fixed-point signals. You can use the default fixed-point
parameters if your input has a word length less than or equal to 16.

In this diagram, DT means data type. You can set the product,
accumulator, quotient, and effectiveness metric data types in the block
mask.

2-185

Autothreshold

Dialog
Box

The Main pane of the Autothreshold dialog box appears as shown in
the following figure.

2-186

Autothreshold

Thresholding operator
Specify the condition the block places on the input matrix values.
If you select > or <=, the block outputs 0 or 1 depending on
whether the input matrix values are above, below, or equal to
the threshold value.

Output threshold
Select this check box to output the calculated threshold values
at the Th port.

Output effectiveness metric
Select this check box to output values that represent the
effectiveness of the thresholding at the EMetric port.

Specify data range
If you clear this check box, the block assumes that floating-point
input values range from 0 to 1. To specify a different data range,
select this check box.

Minimum value of input
Enter the minimum value of your input data. This parameter is
visible if you select the Specify data range check box.

Maximum value of input
Enter the maximum value of your input data. This parameter is
visible if you select the Specify data range check box.

When data range is exceeded
Specify the block’s behavior when the input values are outside the
expected range. Your options are Ignore, Saturate, Warn and
saturate, or Error. This parameter is visible if you select the
Specify data range check box.

Scale threshold
Select this check box to scale the threshold value computed by
Otsu’s method.

Threshold scaling factor
Enter a scalar value. The block multiplies this scalar value with
the threshold value computed by Otsu’s method and uses the

2-187

Autothreshold

result as the new threshold value. This parameter is visible if you
select the Scale threshold check box.

The Data Types pane pane of the Autothreshold dialog box appears as
follows. You can use the default fixed-point parameters if your input
has a word length less than or equal to 16.

2-188

Autothreshold

2-189

Autothreshold

Rounding mode
Select the rounding mode for fixed-point operations. This
parameter does not apply to the Cast to input DT step shown in
“Fixed-Point Data Types” on page 2-185. For this step, Rounding
mode is always set to Nearest.

Overflow mode
Select the overflow mode for fixed-point operations.

Product 1, 2, 3, 4

As shown previously, the output of the multiplier is placed into
the product output data type and scaling. Use this parameter to
specify how to designate the product output word and fraction
lengths.

• When you select Specify word length, you can enter the word
length of the product values in bits. The block sets the fraction
length to give you the best precision.

• When you select Same as input, the characteristics match
those of the input to the block. This choice is only available
for the Product 4 parameter.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output in
bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

2-190

Autothreshold

Accumulator 1, 2, 3, 4

As shown previously, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the
accumulator data type as each element of the input is added to it.
Use this parameter to specify how to designate the accumulator
word and fraction lengths.

• When you select Same as Product, these characteristics match
those of the product output.

• When you select Specify word length, you can enter the
word length of the accumulator values in bits. The block sets
the fraction length to give you the best precision. This choice is
not available for the Accumulator 4 parameter because it is
dependent on the input data type.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator in bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

The Accumulator 3 parameter is only visible if, on the Main
pane, you select the Output effectiveness metric check box.

2-191

Autothreshold

Quotient
Choose how to specify the word length and fraction length of the
quotient data type:

• When you select Specify word length, you can enter the
word length of the quotient values in bits. The block sets the
fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the quotient, in bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the quotient. The bias of all
signals in the Video and Image Processing Blockset software
is 0.

Eff Metric
Choose how to specify the word length and fraction length of the
effectiveness metric data type. This parameter is only visible if,
on the Main tab, you select the Output effectiveness metric
check box.

• When you select Specify word length, you can enter the word
length of the effectiveness metric values, in bits. The block sets
the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the effectiveness metric
in bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the effectiveness metric.
The bias of all signals in the Video and Image Processing
Blockset software is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

2-192

Autothreshold

See Also Compare To Constant Simulink

Relational Operator Simulink

graythresh Image Processing Toolbox

2-193

Blob Analysis

Purpose Compute statistics for labeled regions

Library Statistics

Description Use the Blob Analysis block to calculate statistics for labeled regions
in a binary image. The block returns quantities such as the Centroid,
label matrix, and blob count.

The Blob Analysis block supports variable size signals at the input
and output.

For information on pixel and spatial coordinate system definitions,
see “Coordinate Systems” in the Video and Image Processing Blockset
User’s Guide.

Use the Variable Selector block to select certain blobs based on their
statistics. For more information about this block, see the Variable
Selector block reference page in the Signal Processing Blockset
documentation.

Port Input/Output Supported Data Types
Complex
Values
Supported

BW Vector or matrix that
represents a binary
image

Boolean No

Area Vector that represents
the number of pixels in
labeled regions

32-bit signed integer No

Centroid 2-by-N matrix of centroid
coordinates, where N is
the number of blobs

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

No

2-194

Blob Analysis

Port Input/Output Supported Data Types
Complex
Values
Supported

BBox 4-by-N matrix
of bounding box
coordinates, where N
is the number of blobs

32-bit signed integer No

MajorAxis Vector that represents
the lengths of major axes
of ellipses

• Double-precision floating
point

• Single-precision floating
point

No

MinorAxis Vector that represents
the lengths of minor axes
of ellipses

Same as MajorAxis port No

Orientation Vector that represents
the angles between the
major axes of the ellipses
and the x-axis.

Same as MajorAxis port No

Eccentricity Vector that represents
the eccentricities of the
ellipses

Same as MajorAxis port No

Diameter ^2 Vector that represents
the equivalent diameters
squared

Same as Centroid port No

Extent Vector that represents
the results of dividing
the areas of the blobs
by the area of their
bounding boxes

Same as Centroid port No

2-195

Blob Analysis

Port Input/Output Supported Data Types
Complex
Values
Supported

Perimeter Vector containing an
estimate of the perimeter
length, in pixels, for each
blob

Same as Centroid port No

Label Label matrix 8-, 16-, or 32-bit unsigned
integer

No

Count Scalar value that
represents the actual
number of labeled
regions in each image

Same as Label port No

Dialog Box

Use the check boxes to specify the statistics values you want the block
to output. The following table summarizes the Blob Analysis block
behavior based on which check box you select. For a full description of
each of these statistics, see the regionprops function reference page in
the Image Processing Toolbox documentation.

Main tab
The following table describes parameters that appear in the Main tab of
Blob Analysis.

2-196

Blob Analysis

Parameter Value

Area Select this check box to output a vector that represents the number
of pixels in labeled regions

Centroid Select this check box to output a 2-by-N matrix. The columns represent
the coordinates of the centroid of each region, where N is the number of
blobs.

Example: Suppose there are two blobs, where the row and column
coordinates of their centroids are r1, c1 and r2, c2, respectively. The
block outputs

r r
c c
1 2
1 2

⎡

⎣
⎢

⎤

⎦
⎥

at the Centroid port.

2-197

Blob Analysis

Parameter Value

Bounding box Select this check box to output a 4-by-N matrix. The columns represent
the coordinates of each bounding box, where N is the number of blobs.

Example: Suppose there are two blobs, where r and c define the row and
column location of the upper-left corner of the bounding box. Wherew
and h define the width and height of the bounding box. The block
outputs

r
c
h
w

r
c
h
w

1
1
1
1

2
2
2
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

at the BBox port.

Major axis
length

Select this check box to output a vector with the following
characteristics:

• Represents the lengths of the major axes of ellipses

• Has the same normalized second central moments as the labeled
regions

Minor axis
length

Select this check box to output a vector with the following
characteristics:

• Represents the lengths of the minor axes of ellipses

• Has the same normalized second central moments as the labeled
regions

Orientation Select this check box to output a vector that represents the angles
between the major axes of the ellipses and the x-axis. The angle values
are in radians and range between:

− π
2
and

π
2

2-198

Blob Analysis

Parameter Value

Eccentricity Select this check box to output a vector that represents the eccentricities
of ellipses that have the same second moments as the region

Equivalent
diameter
squared

Select this check box to output a vector that represents the equivalent
diameters squared

Extent Select this check box to output a vector that represents the results of
dividing the areas of the blobs by the area of their bounding boxes

Perimeter Select this check box to output an N-by-1 vector of the perimeter
lengths, in pixels, of each blob, where N is the number of blobs.

Statistics
output data
type

Use this parameter to specify the data type of the outputs at the
Centroid, MajorAxis, MinorAxis, Orientation, Eccentricity,
Equivalent diameter squared, and Extent ports. If you select
Fixed-point, the block cannot calculate the major axis, minor axis,
orientation, or eccentricity and the associated check boxes become
unavailable.

Connectivity Use this parameter to define which pixels connect to each other. If you
want to connect pixels located on the top, bottom, left, and right, select
4. If you want to connect pixels to the other pixels on the top, bottom,
left, right, and diagonally, select 8. For more information about this
parameter, see the Label block reference page. The Connectivity
parameter also affects how the block calculates the perimeter of a blob.
For example:

The following figure illustrates how the block calculates the perimeter
when you set the Connectivity parameter to 4.

2-199

Blob Analysis

Parameter Value

The block calculates the distance between the center of each pixel
(marked by the black dots) and estimates the perimeter to be 22.

The next figure illustrates how the block calculates the perimeter of a
blob when you set the Connectivity parameter to 8.

2-200

Blob Analysis

Parameter Value

The block takes a different path around the blob and estimates the

perimeter to be 18 2 2+ .

Output label
matrix

Select this check box, to output the label matrix at the Label port.
The pixels equal to 0 represent the background. The pixels equal to 1
represent the first object. The pixels equal to 2 represent the second
object, and so on.

Blob Properties tab
The following table describes the parameters of the Blob Properties tab.

2-201

Blob Analysis

Parameter Value

Maximum
number of
blobs

Specify the maximum number of labeled regions in each input image.
The block uses this value to preallocate vectors and matrices to ensure
that they are long enough to hold the statistical values.

Warn if
maximum
number of
blobs is
exceeded

Select this check box to output a warning when the number of blobs in
an image is greater than the value of Maximum number of blobs
parameter.

Output
number of
blobs found

Select this check box to output a scalar value that represents the actual
number of connected regions in each image at the Count port.

Specify
maximum
blob area in
pixels

Select this check box to enter the minimum blob area in the edit box
that appears beside the check box. The blob gets a label if the number
of pixels meets the minimum size specified. The maximum allowable
value is the maximum of unit32 data type. This parameter is tunable.

Exclude blobs
touching
image border

Select this check box to exclude a labeled blob that contains at least
one border pixel.

Output blob
statistics as a
variable-size
signal

Select this check box to output blob statistics as a variable-size signal.
Selecting this check box means that you do not need to specify fill values.

2-202

Blob Analysis

Parameter Value

Fill empty
spaces in
outputs
outputs

Select this check box to fill empty spaces in the statistical vectors with
the values you specify in the Fill values parameter.

The Fill empty spaces in outputs check box does not appear when you
select the Output blob statistics as a variable-size signal check box.

Fill values If you enter a scalar value, the block fills all the empty spaces in the
statistical vectors with this value. If you enter a vector, it must have the
same length as the number of selected statistics. The block uses each
vector element to fill a different statistics vector. If the empty spaces do
not affect your computation, you can deselect the Fill empty spaces in
outputs check box. As a best practice, leave this check box selected.

The Fill values parameter is not visible when you select the Output
blob statistics as a variable-size signal check box.

Fixed-Point Data Types
The following diagram shows the data types used in the Blob Analysis
block for fixed-point signals.

The parameters on the Fixed-point tab apply only when you set the
Statistics output data type parameter to Specify via Fixed-point
tab.

2-203

Blob Analysis

Parameter Value

Rounding
mode

Select the rounding mode Floor, Ceiling, Nearest or Zero for
fixed-point operations.

Overflow
mode

Select the overflow mode, Wrap or Saturate for fixed-point operations.

2-204

Blob Analysis

Parameter Value

Product
output

When you select Binary point scaling, you can enter the Word
length and the Fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the Word
length in bits, and the Slope of the product output. All signals in the
Video and Image Processing Blockset software have a bias of 0.

)-",�4"�/2

������
�����������#��
4��������������������#��

�5����������#��

The block places the output of the multiplier into the Product output
data type and scaling. The computation of the equivalent diameter
squared uses the product output data type. During this computation,
the block multiplies the blob area (stored in the accumulator) by the
4/pi factor. This factor has a word length that equals the value of
Equivalent diameter squared output data type Word length. The
value of the Fraction length equals its word length minus two. Use
this parameter to specify how to designate this product output word
and fraction lengths.

Accumulator When you select Same as product output the characteristics match
the characteristics of the product output.

When you select Binary point scaling, you can enter the Word
length and the Fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the Word
length, in bits, and the Slope of the Accumulator. All signals in the
Video and Image Processing Blockset software have a bias of 0.

2-205

Blob Analysis

Parameter Value

Inputs to the Accumulator get cast to the accumulator data type.
Each element of the input gets added to the output of the adder, which
remains in the accumulator data type. Use this parameter to specify
how to designate this accumulator word and fraction lengths.

Centroid
output

Choose how to specify the Word length and Fraction length of the
output at the Centroid port:

• When you select Same as accumulator, these characteristics match
the characteristics of the accumulator.

• When you select Binary point scaling, you can enter the Word
length and Fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter theWord
length, in bits, and the Slope of the output. All signals in the Video
and Image Processing Blockset software have a bias of 0.

2-206

Blob Analysis

Parameter Value

Equiv Diam^2
output

Choose how to specify the Word length and Fraction length of the
output at the Diameter ^2 port:

• When you select Same as accumulator, these characteristics match
the characteristics of the Accumulator.

• When you select Same as product output, these characteristics
match the characteristics of the Product output.

• When you select Binary point scaling, you can enter the Word
length and Fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter theWord
length, in bits, and the Slope of the output. All signals in the Video
and Image Processing Blockset software have a bias of 0.

Extent output Choose how to specify the Word length and Fraction length of the
output at the Extent port:

• When you select Same as accumulator, these characteristics match
the characteristics of the accumulator.

• When you select Binary point scaling, you can enter the Word
length and Fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter theWord
length, in bits, and the Slope of the output. All signals in the Video
and Image Processing Blockset software have a bias of 0.

Fill in
empty spaces
outputs

Select this check box to fill empty spaces in the statistical vectors with
the value you specify in the Fill values parameter.

The Fill empty spaces in outputs check box is not visible when you
select the Output blob statistics as a variable-size signal check box.

2-207

Blob Analysis

Parameter Value

Perimeter
output

Choose how to specify the Word length and Fraction length of the
output at the Perimeter port:

• When you select Same as accumulator, these characteristics match
the characteristics of the accumulator.

•

When you select Binary point scaling, you can enter the Word
length and Fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the word
length, in bits, and the Slope of the output. All signals in the Video
and Image Processing Blockset software have a bias of 0.

Lock scaling
against
changes by the
autoscaling
tool

Select this parameter to prevent the autoscaling tool in the Fixed-Point
Tool overriding any fixed-point scaling you specify in this block mask.
For more information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also Label Video and Image Processing Blockset

Variable Selector Signal Processing Blockset

regionprops Image Processing Toolbox

2-208

Block Matching

Purpose Estimate motion between images or video frames

Library Analysis & Enhancement

vipanalysis

Description

The Block Matching block estimates motion between two images or
two video frames using “blocks” of pixels. The Block Matching block
matches the block of pixels in frame k to a block of pixels in frame k+1
by moving the block of pixels over a search region.

Suppose the input to the block is frame k. The Block Matching block
performs the following steps:

1 The block subdivides this frame using the values you enter for the
Block size [height width] and Overlap [r c] parameters. In the
following example, the Overlap [r c] parameter is [0 0].

2 For each subdivision or block in frame k+1, the Block Matching block
establishes a search region based on the value you enter for the
Maximum displacement [r c] parameter.

3 The block searches for the new block location using either the
Exhaustive or Three-step search method.

2-209

Block Matching

������������6�������7 0,/4��8�0�9�� �����:�����������������7;

0����:�������

0,/4��8�/���9
��:��:�������:�����������������7<�;

0����:�������

%
��7

+�$�9
��7�
�������

0,/4��8�0����:������:����$��9
��7�
�����������������7<�;

4�� ������9
��7�
�������

'����������

2-210

Block Matching

Port Output Supported Data Types
Complex
Values
Supported

I/I1 Scalar, vector, or matrix
of intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned
integer

No

I2 Scalar, vector, or matrix
of intensity values

Same as I port No

|V|^2 Matrix of velocity
magnitudes

Same as I port No

V Matrix of velocity
components in complex
form

Same as I port Yes

Use the Estimate motion between parameter to specify whether
to estimate the motion between two images or two video frames. If
you select Current frame and N-th frame back, the N parameter
appears in the dialog box. Enter a scalar value that represents the
number of frames between the reference frame and the current frame.

Use the Search method parameter to specify how the block locates
the block of pixels in frame k+1 that best matches the block of pixels
in frame k.

• If you select Exhaustive, the block selects the location of the block
of pixels in frame k+1 by moving the block over the search region 1
pixel at a time. This process is computationally expensive.

• If you select Three-step, the block searches for the block of pixels
in frame k+1 that best matches the block of pixels in frame k using
a steadily decreasing step size. The block begins with a step size

2-211

Block Matching

approximately equal to half the maximum search range. In each
step, the block compares the central point of the search region to
eight search points located on the boundaries of the region and moves
the central point to the search point whose values is the closest to
that of the central point. The block then reduces the step size by half,
and begins the process again. This option is less computationally
expensive, though it might not find the optimal solution.

Use the Block matching criteria parameter to specify how the block
measures the similarity of the block of pixels in frame k to the block of
pixels in frame k+1. If you select Mean square error (MSE), the Block
Matching block estimates the displacement of the center pixel of the

block as the (,)d d1 2 values that minimize the following MSE equation:

MSE d d
N N

s n n k s n d n d k
Bn n

(,) [(, ,) (, ,)]
(,

1 2
1 2

1 2 1 1 2 2
21

1
1 2

=
×

− + + +
∈
∑

)),
∑

In the previous equation, B is an N N1 2× block of pixels, and
s(x,y,k) denotes a pixel location at (x,y) in frame k. If you select Mean
absolute difference (MAD), the Block Matching block estimates the

displacement of the center pixel of the block as the (,)d d1 2 values that
minimize the following MAD equation:

MAD d d
N N

s n n k s n d n d k
Bn n

(,) | (, ,) (, ,)|
(,)

1 2
1 2

1 2 1 1 2 2
1

1
1 2

=
×

− + + +
∈
∑

,,
∑

Use the Block size [height width] and Overlap [r c] parameters
to specify how the block subdivides the input image. For a graphical
description of these parameters, see the first figure in this reference
page. If the Overlap [r c] parameter is not [0 0], the blocks would
overlap each other by the number of pixels you specify.

Use the Maximum displacement [r c] parameter to specify the
maximum number of pixels any center pixel in a block of pixels might

2-212

Block Matching

move from image to image or frame to frame. The block uses this value
to determine the size of the search region.

Use the Velocity output parameter to specify the block’s output. If you
select Magnitude-squared, the block outputs the optical flow matrix
where each element is of the form u2+v2. If you select Horizontal and
vertical components in complex form, the block outputs the optical

flow matrix where each element is of the form u jv+ . The real part of
each value is the horizontal velocity component and the imaginary part
of each value is the vertical velocity component.

Fixed-Point
Data
Types

The following diagram shows the data types used in the Block Matching
block for fixed-point signals.

2-213

Block Matching

'�0,
������
����
������#��

)0/�%
��7�)���:���

�../2

,:������
��������:�����������������
����:��������
�����������#��;

�����
������#��

������
����
������#��

'�0,)-",�4"�/2 '�0,

4������
������#��

4������
������#��

������
����
������#��

,:������
��������:���
���
���������������
����:����������������#��;

)�.�%
��7�)���:���

'�0,
������
����
������#��

�../2

,:������
��������:�����������������
����:��������
�����������#��;

�����
������#��

������
����
������#��

You can set the accumulator and output data types in the block mask
as discussed in the next section.

2-214

Block Matching

Dialog
Box

The Main pane of the Block Matching dialog box appears as shown in
the following figure.

Estimate motion between
Select Two images to estimate the motion between two images.
Select Current frame and N-th frame back to estimate the
motion between two video frames that are N frames apart.

2-215

Block Matching

N
Enter a scalar value that represents the number of frames
between the reference frame and the current frame. This
parameter is only visible if, for the Estimate motion between
parameter, you select Current frame and N-th frame back.

Search method
Specify how the block searches for the block of pixels in the next
image or frame. Your choices are Exhaustive or Three-step.

Block matching criteria
Specify how the block measures the similarity of the block of
pixels in frame k to the block of pixels in frame k+1. Your choices
are Mean square error (MSE) or Mean absolute difference
(MAD).

Block size [height width]
Specify the size of the block of pixels.

Overlap [r c]
Specify the overlap (in pixels) of two subdivisions of the input
image.

Maximum displacement [r c]
Specify the maximum number of pixels any center pixel in a block
of pixels might move from image to image or frame to frame. The
block uses this value to determine the size of the search region.

Velocity output
If you select Magnitude-squared, the block outputs the optical

flow matrix where each element is of the form u v2 2+ . If you
select Horizontal and vertical components in complex
form, the block outputs the optical flow matrix where each

element is of the form u jv+ .

The Data Types pane of the Block Matching dialog box appears as
shown in the following figure.

2-216

Block Matching

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

2-217

Block Matching

Product output

As shown previously, the output of the multiplier is placed into
the product output data type and scaling. Use this parameter to
specify how to designate the product output word and fraction
lengths.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

Accumulator

As depicted previously, inputs to the accumulator are cast to the
accumulator data type. The output of the adder remains in the

2-218

Block Matching

accumulator data type as each element of the input is added to it.
Use this parameter to specify how to designate this accumulator
word and fraction lengths.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Binary point scaling, you can enter the
word length of the output, in bits. The fractional length is
always 0.

• When you select Slope and bias scaling, you can enter the
word length, in bits, of the output. The bias of all signals in the
Video and Image Processing Blockset software is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also Optical Flow Video and Image Processing Blockset software

2-219

Block Processing

Purpose Repeat user-specified operation on submatrices of input matrix

Library Utilities

Description The Block Processing block extracts submatrices of a user-specified
size from each input matrix. It sends each submatrix to a subsystem
for processing, and then reassembles each subsystem output into the
output matrix.

0�9�#����

Note Because you modify the Block Processing block’s subsystem,
the link between this block and the block library is broken when you
click-and-drag a Block Processing block into your model. As a result,
this block will not be automatically updated if you upgrade to a newer
version of the Video and Image Processing Blockset software. If you
right-click on the block and select Look under mask, you can delete
blocks from this subsystem without triggering a warning. Lastly, if
you search for library blocks in a model, this block will not be part of
the results.

The blocks inside the subsystem dictate the frame status of the input
and output signals, whether single channel or multichannel signals are
supported, and which data types are supported by this block.

Use the Number of inputs and Number of outputs parameters to
specify the number of input and output ports on the Block Processing
block.

2-220

Block Processing

Use the Block size parameter to specify the size of each submatrix
in cell array format. Each vector in the cell array corresponds to one
input; the block uses the vectors in the order you enter them. If you
have one input port, enter one vector. If you have more than one input
port, you can enter one vector that is used for all inputs or you can
specify a different vector for each input. For example, if you want each
submatrix to be 2-by-3, enter {[2 3]}.

Use the Overlap parameter to specify the overlap of each submatrix
in cell array format. Each vector in the cell array corresponds to the
overlap of one input; the block uses the vectors in the order they are
specified. If you enter one vector, each overlap is the same size. For
example, if you want each 3-by-3 submatrix to overlap by 1 row and 2
columns, enter {[1 2]}.

The Traverse order parameter determines how the block extracts
submatrices from the input matrix. If you select Row-wise, the
block extracts submatrices by moving across the rows. If you select
Column-wise, the block extracts submatrices by moving down the
columns.

Click the Open Subsystem button to open the block’s subsystem.
Click-and-drag blocks into this subsystem to define the processing
operation(s) the block performs on the submatrices. The input to this
subsystem are the submatrices whose size is determined by the Block
size parameter.

Note When you place an Assignment block inside a Block Processing
block’s subsystem, the Assignment block behaves as though it is inside
a For Iterator block. For a description of this behavior, see the “Iterated
Assignment” section of the Assignment block reference page. To achieve
the normal behavior of the Assignment block, use an Overwrite Values
block inside the Block Processing block’s subsystem.

2-221

Block Processing

Example Example 1 -- Multiple Inputs

In this example, you multiply each element of three input matrices by
two and add the results using the Block Processing block. Suppose you
have the following model:

1 Use the Block Processing block to perform the multiplication and
addition on submatrices of the three input matrices. Set the block
parameters as shown in the following figure.

• Number of inputs = 3

• Number of outputs = 1

• Block size = {[2 2]}

2-222

Block Processing

For each iteration, the block sends a 2-by-2 submatrix from each
input matrix to the Block Processing blocks’ subsystem to be
processed. The block calculates its total number of iterations using
the dimensions of the matrix connected to the top input port. In this
case, the first input is a 4-by-4 matrix. Since the block can extract
four 2-by-2 submatrices from this input matrix, the block iterates
four times.

2 Click Open Subsystem.

The block’s subsystem opens.

2-223

Block Processing

3 Click and drag the following blocks into the subsystem:

Block Library Quantity

Gain Simulink / Math Operations 3

Sum Simulink / Math Operations 1

4 Use the Gain blocks to multiply the elements of each submatrix by
two. Set the Gain parameter to 2.

5 Use the Sum block to add the values. Set the Icon shape parameter
to rectangular and the List of signs parameter to +++.

2-224

Block Processing

6 Connect the blocks as shown in the following figure.

7 Close the subsystem and Click OK.

8 Run the model.

2-225

Block Processing

The Block Processing block operates on the submatrices and
assembles the results into an output matrix that is displayed using
the Display block.

2-226

Block Processing

Dialog
Box

The Block Processing dialog box appears as shown in the following
figure.

Number of inputs
Enter the number of input ports on the Block Processing block.

Number of outputs
Enter the number of output ports on the Block Processing block.

Block size
Specify the size of each submatrix in cell array format. Each
vector in the cell array corresponds to one input.

2-227

Block Processing

Overlap
Specify the overlap of each submatrix in cell array format. Each
vector in the cell array corresponds to the overlap of one input.

Traverse order
Determines how the block extracts submatrices from the input
matrix. If you select Row-wise, the block extracts submatrices
by moving across the rows. If you select Column-wise, the block
extracts submatrices by moving down the columns.

Open Subsystem
Click this button to open the block’s subsystem. Click-and-drag
blocks into this subsystem to define the processing operation(s)
the block performs on the submatrices.

See Also For Iterator Simulink

blockproc Image Processing Toolbox

2-228

Bottom-hat

Purpose Perform bottom-hat filtering on intensity or binary images

Library Morphological Operations

Description Use the Bottom-hat block to perform bottom-hat filtering on an intensity
or binary image using a predefined neighborhood or structuring
element. Bottom-hat filtering is the equivalent of subtracting the input
image from the result of performing a morphological closing operation
on the input image. This block uses flat structuring elements only.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

Nhood Matrix or vector of ones
and zeros that represents
the neighborhood values

Boolean No

Output Scalar, vector, or matrix
that represents the
filtered image

Same as I port No

If your input image is a binary image, for the Input image type
parameter, select Binary. If your input image is an intensity image,
select Intensity.

Use the Neighborhood or structuring element source parameter to
specify how to enter your neighborhood or structuring element values.
If you select Specify via dialog, the Neighborhood or structuring

2-229

Bottom-hat

element parameter appears in the dialog box. If you select Input
port, the Nhood port appears on the block. Use this port to enter your
neighborhood values as a matrix or vector of 1s and 0s. You can only
specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to
define the region the block moves throughout the image. Specify a
neighborhood by entering a matrix or vector of 1s and 0s. Specify a
structuring element with the strel function from the Image Processing
Toolbox. If the structuring element is decomposable into smaller
elements, the block executes at higher speeds due to the use of a more
efficient algorithm.

Dialog
Box

The Bottom-hat dialog box appears as shown in the following figure.

2-230

Bottom-hat

Input image type
If your input image is a binary image, select Binary. If your input
image is an intensity image, select Intensity.

Neighborhood or structuring element source
Specify how to enter your neighborhood or structuring element
values. Select Specify via dialog to enter the values in the
dialog box. Select Input port to use the Nhood port to specify the
neighborhood values. You can only specify a structuring element
using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a
matrix or vector of 1s and 0s. If you are specifying a structuring
element, use the strel function from the Image Processing
Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify
via dialog.

See Also Closing Video and Image Processing Blockset software

Dilation Video and Image Processing Blockset software

Erosion Video and Image Processing Blockset software

Label Video and Image Processing Blockset software

Opening Video and Image Processing Blockset software

Top-hat Video and Image Processing Blockset software

imbothat Image Processing Toolbox software

strel Image Processing Toolbox software

2-231

Chroma Resampling

Purpose Downsample or upsample chrominance components of images

Library Conversions

Description The Chroma Resampling block downsamples or upsamples chrominance
components of pixels to reduce the bandwidth required for transmission
or storage of a signal.

Port Input/Output Supported Data Types
Complex
Values
Supported

Cb Matrix that
represents one
chrominance
component of an
image

• Double-precision floating point

• Single-precision floating point

• 8-bit unsigned integer

No

Cr Matrix that
represents one
chrominance
component of an
image

Same as Cb port No

The data type of the output signals is the same as the data type of the
input signals.

Chroma Resampling Formats

The Chroma Resampling block supports the formats shown in the
following diagram.

2-232

Chroma Resampling

����� ����������

�������	
�� �������	
��

�
�������������

�������

Downsampling

If, for the Resampling parameter, you select 4:4:4 to 4:2:2,
4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2),
4:4:4 to 4:1:1, 4:2:2 to 4:2:0 (MPEG1), or
4:2:2 to 4:2:0 (MPEG2), the block performs a downsampling
operation. When the block downsamples from one format to another, it
can bandlimit the input signal by applying a lowpass filter to prevent
aliasing.

If, for the Antialiasing filter parameter, you select Default, the block
uses a built-in lowpass filter to prevent aliasing.

If, for the Resampling parameter, you select 4:4:4 to 4:2:2,
4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2), or
4:4:4 to 4:1:1 and, for the Antialiasing filter parameter, you select

2-233

Chroma Resampling

User-defined, the Horizontal filter coefficients parameter appears
on the dialog box. Enter the filter coefficients to apply to your input.

If, for theResampling parameter, you select 4:4:4 to 4:2:0 (MPEG1),
4:4:4 to 4:2:0 (MPEG2), 4:2:2 to 4:2:0 (MPEG1), or
4:2:2 to 4:2:0 (MPEG2) and, for the Antialiasing filter parameter,
you select User-defined. Vertical filter coefficients parameters
appear on the dialog box. Enter an even number of filter coefficients to
apply to your input signal.

If, for the Antialiasing filter parameter, you select None, the block
does not filter the input signal.

Upsampling

If, for the Resampling parameter, you select 4:2:2 to 4:4:4,
4:2:0 (MPEG1) to 4:2:2, 4:2:0 (MPEG1) to 4:4:4,
4:2:0 (MPEG2) to 4:2:2, 4:2:0 (MPEG2) to 4:4:4, or
4:1:1 to 4:4:4, the block performs an upsampling operation.

When the block upsamples from one format to another, it uses
interpolation to approximate the missing chrominance values. If, for
the Interpolation parameter, you select Linear, the block uses linear
interpolation to calculate the missing values. If, for the Interpolation
parameter, you select Pixel replication, the block replicates the
chrominance values of the neighboring pixels to create the upsampled
image.

Row-Major Data Format

The MATLAB environment and the Video and Image Processing
Blockset software use column-major data organization. However, the
Chroma Resampling block gives you the option to process data that
is stored in row-major format. When you select the Input image is
transposed (data order is row major) check box, the block assumes
that the input buffer contains contiguous data elements from the first
row first, then data elements from the second row second, and so on
through the last row. Use this functionality only when you meet all
the following criteria:

2-234

Chroma Resampling

• You are developing algorithms to run on an embedded target that
uses the row-major format.

• You want to limit the additional processing required to take
the transpose of signals at the interfaces of the row-major and
column-major systems.

When you use the row-major functionality, you must consider the
following issues:

• When you select this check box, the signal dimensions of the Chroma
Resampling block’s input are swapped.

• All the Video and Image Processing Blockset blocks can be used to
process data that is in the row-major format, but you need to know
the image dimensions when you develop your algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify
that your filter coefficients are transposed. If you are using the
Rotate block, you need to use negative rotation angles, etc.

• Only three blocks have the Input image is transposed (data
order is row major) check box. They are the Chroma Resampling,
Deinterlacing, and Insert Text blocks. You need to select this check
box to enable row-major functionality in these blocks. All other blocks
must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major
format to run on an embedded target.

2-235

Chroma Resampling

��	��
��
���

����

���������

����

���������

����

���������

�����

������
!������
�����	������

�����"
����������
���#����������#���	
�����
������$�������������
���
��	������
��������������	
��
	���������$%��&���������

'�
�		�	
���������
���

����

��	��
����

����

'�
�		�	
�����������

����

See the DM642 EVM Video ADC and DM642 EVM Video DAC
reference pages in the Target Support Package™ User’s Guide for more
information about data order in embedded targets.

2-236

Chroma Resampling

Dialog
Box

The Chroma Resampling dialog box appears as shown in the following
figure.

Resampling
Specify the resampling format.

Antialiasing filter
Specify the lowpass filter that the block uses to prevent aliasing.
If you select Default, the block uses a built-in lowpass filter. If
you select User-defined, the Horizontal filter coefficients
and/or Vertical filter coefficients parameters appear on the
dialog box. If you select None, the block does not filter the input
signal. This parameter is visible when you are downsampling
the chrominance values.

Horizontal filter coefficients
Enter the filter coefficients to apply to your input signal.
This parameter is visible if, for the Resampling parameter,
you select 4:4:4 to 4:2:2, 4:4:4 to 4:2:0 (MPEG1),
4:4:4 to 4:2:0 (MPEG2), or 4:4:4 to 4:1:1 and, for the
Antialiasing filter parameter, you select User-defined.

Vertical filter coefficients
Enter the filter coefficients to apply to your input signal. This
parameter is visible if, for the Resampling parameter, you

2-237

Chroma Resampling

select 4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2),
4:2:2 to 4:2:0 (MPEG1), or 4:2:2 to 4:2:0 (MPEG2) and, for
the Antialiasing filter parameter, you select User-defined.

Interpolation
Specify the interpolation method that the block uses to
approximate the missing chrominance values. If you select
Linear, the block uses linear interpolation to calculate the
missing values. If you select Pixel replication, the block
replicates the chrominance values of the neighboring pixels
to create the upsampled image. This parameter is visible
when you are upsampling the chrominance values. This
parameter is visible if the Resampling parameter is set to
4:2:2 to 4:4:4 , 4:2:0 (MPEG1) to 4:4:4 , 4:2:0 (MPEG2)
to 4:4:4 , 4:1:1 to 4:4:4 , 4:2:0 (MPEG1) to 4:2:2 , or
4:2:0 (MPEG2) to 4:2:2 .

Input image is transposed (data order is row major)
When you select this check box, the block assumes that the input
buffer contains data elements from the first row first, then data
elements from the second row second, and so on through the last
row.

References [1] Haskell, Barry G., Atul Puri, and Arun N. Netravali. Digital Video:
An Introduction to MPEG-2. New York: Chapman & Hall, 1996.

[2] Recommendation ITU-R BT.601-5, Studio Encoding Parameters of
Digital Television for Standard 4:3 and Wide Screen 16:9 Aspect Ratios.

[3] Wang, Yao, Jorn Ostermann, Ya-Qin Zhang. Video Processing and
Communications. Upper Saddle River, NJ: Prentice Hall, 2002.

2-238

Chroma Resampling

See Also Autothreshold Video and Image Processing Blockset
software

Color Space
Conversion

Video and Image Processing Blockset
software

Image Complement Video and Image Processing Blockset
software

2-239

Closing

Purpose Perform morphological closing on binary or intensity images

Library Morphological Operations

Description The Closing block performs a dilation operation followed by an erosion
operation using a predefined neighborhood or structuring element. This
block uses flat structuring elements only.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

Nhood Matrix or vector of ones and
zeros that represents the
neighborhood values

Boolean No

Output Vector or matrix of intensity
values that represents the
closed image

Same as I port No

The output signal has the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to
specify how to enter your neighborhood or structuring element values.

2-240

Closing

If you select Specify via dialog, the Neighborhood or structuring
element parameter appears in the dialog box. If you select Input
port, the Nhood port appears on the block. Use this port to enter your
neighborhood values as a matrix or vector of 1s and 0s. You can only
specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to
define the region the block moves throughout the image. Specify a
neighborhood by entering a matrix or vector of 1s and 0s. Specify a
structuring element with the strel function from the Image Processing
Toolbox. If the structuring element is decomposable into smaller
elements, the block executes at higher speeds due to the use of a more
efficient algorithm.

Dialog
Box

The Closing dialog box appears as shown in the following figure.

Neighborhood or structuring element source
Specify how to enter your neighborhood or structuring element
values. Select Specify via dialog to enter the values in the

2-241

Closing

dialog box. Select Input port to use the Nhood port to specify the
neighborhood values. You can only specify a structuring element
using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a
matrix or vector of 1s and 0s. If you are specifying a structuring
element, use the strel function from the Image Processing
Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify
via dialog.

References [1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York:
Springer, 2003.

See Also Bottom-hat Video and Image Processing Blockset software

Dilation Video and Image Processing Blockset software

Erosion Video and Image Processing Blockset software

Label Video and Image Processing Blockset software

Opening Video and Image Processing Blockset software

Top-hat Video and Image Processing Blockset software

imclose Image Processing Toolbox software

strel Image Processing Toolbox software

2-242

Color Space Conversion

Purpose Convert color information between color spaces

Library Conversions

Description The Color Space Conversion block converts color information between
color spaces. Use the Conversion parameter to specify the color spaces
you are converting between. Your choices are R'G'B' to Y'CbCr,
Y'CbCr to R'G'B', R'G'B' to intensity, R'G'B' to HSV, HSV to
R'G'B', sR'G'B' to XYZ, XYZ to sR'G'B', sR'G'B' to L*a*b*, and
L*a*b* to sR'G'B'.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input /
Output

M-by-N-by-P color video signal
where P is the number of color
planes

• Double-precision floating
point

• Single-precision floating point

• 8-bit unsigned integer

No

R’ Matrix that represents one
plane of the input RGB video
stream

Same as the Input port No

G’ Matrix that represents one
plane of the input RGB video
stream

Same as the Input port No

B’ Matrix that represents one
plane of the input RGB video
stream

Same as the Input port No

Y’ Matrix that represents the luma
portion of an image

Same as the Input port No

Cb Matrix that represents one
chrominance component of an
image

Same as the Input port No

2-243

Color Space Conversion

Port Input/Output Supported Data Types
Complex
Values
Supported

Cr Matrix that represents one
chrominance component of an
image

Same as the Input port No

I’ Matrix of intensity values Same as the Input port No

H Matrix that represents the hue
component of an image

• Double-precision floating
point

• Single-precision floating point

No

S Matrix that represents
represent the saturation
component of an image

Same as the H port No

V Matrix that represents the
value (brightness) component of
an image

Same as the H port No

X Matrix that represents the X
component of an image

Same as the H port No

Y Matrix that represents the Y
component of an image

Same as the H port No

Z Matrix that represents the Z
component of an image

Same as the H port No

L* Matrix that represents the
luminance portion of an image

Same as the H port No

a* Matrix that represents the a*
component of an image

Same as the H port No

b* Matrix that represents the b*
component of an image

Same as the H port No

The data type of the output signal is the same as the data type of the
input signal.

2-244

Color Space Conversion

Use the Image signal parameter to specify how to input and output
a color video signal. If you select One multidimensional signal, the
block accepts an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port accepts one M-by-N
plane of an RGB video stream.

Note The prime notation indicates that the signals are gamma
corrected.

Conversion Between R’G’B’ and Y’CbCr Color Spaces

The R’G’B’ to Y’CbCr conversion and the Y’CbCr to R’G’B’ conversion
are defined by the following equations:

′⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ ×
′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Y
Cb
Cr

A
R
G
B

16
128
128

′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ×
′⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜

R
G
B

B
Y
Cb
Cr

16
128
128⎜⎜

⎞

⎠

⎟
⎟
⎟

The values in the A and B matrices are based on your choices for the
Use conversion specified by and Scanning standard parameters.
The following table summarizes the possible values:

2-245

Color Space Conversion

Use conversion specified by = Rec. 709 (HDTV)Matrix Use conversion
specified by = Rec.
601 (SDTV) Scanning standard =

1125/60/2:1
Scanning standard =
1250/50/2:1

A 0 25678824 0 50412941 0 09790588
0 1482229 0 29099279 0 43921
. . .

. . .− − 5569
0 43921569 0 36778831 0 07142737. . .− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 0.18258588 0.61423059 0.06200706
 -0.10064373 -0.338557195 0.43921569
 0.43921569 -0.39894216 -0.04027352

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 25678824 0 50412941 0 09790588
0 1482229 0 29099279 0 43921
. . .

. . .− − 5569
0 43921569 0 36778831 0 07142737. . .− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B 1 1643836 0 1 5960268
1 1643836 0 39176229 0 81296765
0 164383

. .

. . .
.

− −
556 2 0172321 0.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1.16438356 0 1.79274107
1.16438356 -0.21324861 -0.53290933
1.164338356 2.11240179 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1643836 0 1 5960268
1 1643836 0 39176229 0 81296765
0 164383

. .

. . .
.

− −
556 2 0172321 0.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Conversion R’B’G’ to Intensity

The conversion from the R’B’G’ color space to intensity is defined by the
following equation:

intensity = []
′
′
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 299 0 587 0 114. . .
R
G
B

Conversion Between R’G’B’ and HSV Color Spaces

The R’G’B’ to HSV conversion is defined by the following equations. In
these equations, MAX and MIN represent the maximum and minimum
values of each R’G’B’ triplet, respectively. H, S, and V vary from 0 to 1,
where 1 represents the greatest saturation and value.

2-246

Color Space Conversion

H

G B
MAX MIN

R MAX

B R
MAX MIN

G=

′ − ′
−

⎛
⎝⎜

⎞
⎠⎟

′ =

+
′ − ′

−
⎛
⎝⎜

⎞
⎠⎟

′

/ ,

/ ,

6

2 6

if

if ==

+
′ − ′

−
⎛
⎝⎜

⎞
⎠⎟

′ =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

= −

MAX

R G
MAX MIN

B MAX

S
MAX MIN

MAX
V

4 6/ , if

== MAX

The HSV to R’G’B’ conversion is defined by the following equations:

H H

f H H

p S
q fS
t f S

H R G t

i

i

i tmp tmp

= ⎢⎣ ⎥⎦
= −
= −
= −
= − −

= = =

6

6
1
1
1 1

0 1
()

, , ,if BB p

H R q G B p

H R p G B

tmp

i tmp tmp tmp

i tmp tmp tm

=

= = = =

= = =

if

if

1 1

2 1

, , ,

, , , pp

i tmp tmp tmp

i tmp tmp tmp

t

H R p G q B

H R t G p B

=

= = = =

= = = =

if

if

3 1

4 1

, , ,

, , ,

iif H R G p B q

u V R G B

R uR

i tmp tmp tmp

tmp tmp tmp

tm

= = = =

=
′ =

5 1, , ,

/ max(, ,)

pp

tmp

tmp

G uG

B uB

′ =
′ =

For more information about the HSV color space, see “HSV Color Space”
in the Image Processing Toolbox documentation.

2-247

Color Space Conversion

Conversion Between sR’G’B’ and XYZ Color Spaces

The sR’G’B’ to XYZ conversion is a two-step process. First, the block
converts the gamma-corrected sR’G’B’ values to linear sRGB values
using the following equations:

If ′ ′ ′ ≤
= ′
= ′

R G B

R R

G G

sRGB sRGB sRGB

sRGB sRGB

sRGB sR

, , .
/ .

0 03928
12 92

GGB

sRGB sRGB

sRGB sRGB sRG

B B

R G B

/ .
/ .

, ,

12 92
12 92= ′

′ ′ ′otherwise, if BB

sRGB
sRGB

sRGB
sRGB

R R

G G

>

= ′ +⎡
⎣⎢

⎤
⎦⎥

= ′ +

0 03928

0 055
1 055

2 4

.

(.)
.

(

.

00 055
1 055

0 055
1 055

2 4

2 4

.)
.

(.)
.

.

.

⎡
⎣⎢

⎤
⎦⎥

= ′ +⎡
⎣⎢

⎤
⎦⎥

B B
sRGB

sRGB

Then the block converts the sRGB values to XYZ values using the
following equation:

X
Y
Z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
0 41239079926596 0 35758433938388 0 1804807884. . . 00183
0 21263900587151 0 71516867876776 0 07219231536073
0 019

. . .

. 333081871559 0 11919477979463 0 95053215224966. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

×
RsRGGB

sRGB

sRGB

G
B

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The XYZ to sR’G’B’ conversion is also a two-step process. First, the
block converts the XYZ values to linear sRGB values using the following
equation:

R
G
B

sRGB

sRGB

sRGB

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
0 41239079926596 0 35758433938388. . 00 18048078840183
0 21263900587151 0 71516867876776 0 0721923

.
. . . 11536073

0 01933081871559 0 11919477979463 0 95053215224966. . .

⎡

⎣

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

×
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1 X
Y
Z

2-248

Color Space Conversion

Then the block applies gamma correction to obtain the sR’G’B’ values.
This process is described by the following equations:

If R G B

R R

G G

sRGB sRGB sRGB

sRGB sRGB

sRGB s

, , .
.
.

≤
′ =
′ =

0 00304
12 92
12 92 RRGB

sRGB sRGB

sRGB sRGB sRGB

B B

R G B

′ =
>

12 92
0 00304

.
, , .otherwise, if

′′ = −

′ =

R R

G G

sRGB sRGB

sRGB sRGB

1 055 0 055

1 055

1 0 2 4

1 0 2 4

. .

.

(. / .)

(. / .))

(. / .)

.

. .

−

′ = −

0 055

1 055 0 0551 0 2 4B BsRGB sRGB

Note Video and Image Processing Blockset software uses a D65 white
point, which is specified in Recommendation ITU-R BT.709, for this
conversion. In contrast, the Image Processing Toolbox conversion is
based on ICC profiles, and it uses a D65 to D50 Bradford adaptation
transformation to the D50 white point. If you are using these two
products and comparing results, you must account for this difference.

Conversion Between sR’G’B’ and L*a*b* Color Spaces

The Color Space Conversion block converts sR’G’B’ values to L*a*b*
values in two steps. First it converts sR’G’B’ to XYZ values using
the equations described in “Conversion Between sR’G’B’ and XYZ
Color Spaces” on page 2-248. Then it uses the following equations to

transform the XYZ values to L*a*b* values. Here, Xn , Yn , and Zn are
the tristimulus values of the reference white point you specify using the
White point parameter:

2-249

Color Space Conversion

L Y Y for Y Y

L Y Y

a

n n

n

* (/) , .
* . ,

*

= − >
=

=

116 16 0 008856
903 3

5

1 3

otherwise

000
200

1 3

(() ())
* (() ()),

() ,

f X X f Y Y

b f Y Y f Z Z

f t t for t

n n

n n

−
= −

=where >>
= +

0 008856
7 787 16 166

.
() . ,f t t otherwise

The block converts L*a*b* values to sR’G’B’ values in two steps as
well. The block transforms the L*a*b* values to XYZ values using
these equations:

For

where

Y Y

X X P a

Y Y P

Z Z P b

P

n

n

n

n

>

= +

=

= −

=

0 008856

500

200

3

3

3

.

(*)

(*) ,

(LL *) /+16 116

2-250

Color Space Conversion

Dialog
Box

The Color Space Conversion dialog box appears as shown in the
following figure.

Conversion
Specify the color spaces you are converting between. Your
choices are R'G'B' to Y'CbCr, Y'CbCr to R'G'B', R'G'B' to
intensity, R'G'B' to HSV, HSV to R'G'B', sR'G'B' to XYZ,
XYZ to sR'G'B', sR'G'B' to L*a*b*, and L*a*b* to sR'G'B'.

Use conversion specified by
Specify the standard to use to convert your values between the
R’G’B’ and Y’CbCr color spaces. Your choices are Rec. 601
(SDTV) or Rec. 709 (HDTV). This parameter is only available
if, for the Conversion parameter, you select R'G'B' to Y'CbCr
or Y'CbCr to R'G'B'.

Scanning standard
Specify the scanning standard to use to convert your values
between the R’G’B’ and Y’CbCr color spaces. Your choices are

2-251

Color Space Conversion

1125/60/2:1 or 1250/50/2:1. This parameter is only available
if, for the Use conversion specified by parameter, you select
Rec. 709 (HDTV).

White point
Specify the reference white point. This parameter is visible if,
for the Conversion parameter, you select sR'G'B' to L*a*b*
or L*a*b* to sR'G'B'.

Image signal
Specify how to input and output a color video signal. If you
select One multidimensional signal, the block accepts an
M-by-N-by-P color video signal, where P is the number of color
planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port accepts one
M-by-N plane of an RGB video stream.

References [1] Poynton, Charles A. A Technical Introduction to Digital Video. New
York: John Wiley & Sons, 1996.

[2] Recommendation ITU-R BT.601-5, Studio Encoding Parameters of
Digital Television for Standard 4:3 and Wide Screen 16:9 Aspect Ratios.

[3] Recommendation ITU-R BT.709-5. Parameter values for the HDTV
standards for production and international programme exchange.

[4] Stokes, Michael, Matthew Anderson, Srinivasan Chandrasekar,
and Ricardo Motta, “A Standard Default Color Space for the Internet -
sRGB.” November 5, 1996.

[5] Berns, Roy S. Principles of Color Technology, 3rd ed. New York:
John Wiley & Sons, 2000.

See Also Chroma Resampling Video and Image Processing Blockset
software

rgb2hsv MATLAB software

2-252

Color Space Conversion

hsv2rgb MATLAB software

rgb2ycbcr Image Processing Toolbox software

ycbcr2rgb Image Processing Toolbox software

rgb2gray Image Processing Toolbox software

makecform Image Processing Toolbox software

applycform Image Processing Toolbox software

2-253

Compositing

Purpose Combine pixel values of two images, overlay one image over another,
or highlight selected pixels

Library Text & Graphics

viptextngfix

Description

You can use the Compositing block to combine two images, where each
pixel of the output image is a linear combination of the pixels in each
input image. This process is defined by the following equation:

O i j X I i j X I i j(,) () * (,) * (,)= − +1 1 2

The opacity factor, X, where 0 1≤ ≤X , defines the amount by which to
scale each pixel value before combining them.

You can use the Compositing block to overlay a Image 2 over Image 1.
The masking factor and the location determine which Image 1 pixels are
overwritten. The masking factor(s) can be 0 or 1, where 0 corresponds
to not overwriting pixels and 1 corresponds to overwriting pixels.

You can use the Compositing block to highlight selected pixels in the
input image. Use a binary image, input at the Mask port, to specify
which pixels to highlight.

Note This block supports intensity and color images on its ports.

2-254

Compositing

Port Input/Output Supported Data Types
Complex
Values
Supported

Image 1 M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

• Double-precision floating
point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

Image 2 M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

Same as Image 1 port No

Factor Scalar or matrix of opacity or
masking factor

• Double-precision floating
point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

2-255

Compositing

Port Input/Output Supported Data Types
Complex
Values
Supported

Mask Binary image that specifies
which pixels to highlight

Same as Factor port

When theOperation parameter
is set to Highlight selected
pixel, the input to the Mask
port must be a Boolean data
type.

No

Location Two-element vector that
specifies the position of the
upper-left corner of the image
input at port I2

• Double-precision floating
point. (Only supported
if the input to the Image
1 and Image 2 ports is a
floating-point data type.)

• Single-precision floating
point. (Only supported
if the input to the Image
1 and Image 2 ports is a
floating-point data type.)

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

Output Vector or matrix of intensity or
color values

Same as Image 1 port No

Use the Operation parameter to specify the operation you want the
block to perform. If you choose Blend, the block linearly combines
the pixels of one image with another image. If you choose Binary
mask, the block overwrites the pixel values of one image with the pixel
values of another image. If you choose Highlight selected pixel,
the block uses the binary image input at the Mask port to determine
which pixels are set to the maximum value supported by their data

2-256

Compositing

type. For example, for every 1 in the binary image, the block sets the
corresponding pixel in input image to the maximum value supported
by its data type. For every 0 in the binary image, the block leaves the
pixel value alone.

If, for the Operation parameter, you choose Blend, the Opacity
factor(s) source parameter appears on the dialog box. Use this
parameter to indicate where to specify the opacity factor(s).

• If you choose Specify via dialog, the Opacity factor(s)
parameter appears on the dialog box. Use this parameter to define
the amount by which the block scales each I2 pixel value before
combining them with the Image 1 pixel values. You can enter a
scalar value used for all pixels or a matrix of values that is the same
size as Image 2.

• If you choose Input port, the Factor port appears on the block. The
input to this port must be a scalar or matrix of values as described
for the Opacity factor(s) parameter. If the input to the Image 1
and Image 2 ports is floating point, the input to this port must be
the same floating-point data type.

If, for the Operation parameter, you choose Binary mask, the Mask
source parameter appears on the dialog box. Use this parameter to
indicate where to specify the masking factor(s).

• If you choose Specify via dialog, theMask parameter appears on
the dialog box. Use this parameter and the location of the I2 image
to define which pixels are overwritten. You can enter 0 or 1, which
is used for all pixels in I2, or a matrix of 0s and 1s that defines the
factor for each I2 pixel.

• If you choose Input port, the Factor port appears on the block.
The input to this port must be a 0 or 1 whose data type is Boolean
or a matrix of 0s or 1s whose data type is Boolean as described for
the Mask parameter.

2-257

Compositing

Use the Location source parameter to specify where to enter the
zero-based location of the upper-left corner of the image input at port I2.

• If you choose Specify via dialog, the Location [row column]
parameter appears on the dialog box. Enter a two-element vector
that specifies the row and column position of the upper-left corner
of the image input at port Image 2 relative to the upper-left corner
of the image input at port Image 1. Positive values move the image
down and to the right; negative values move the image up and to the
left. If the first element is greater than the number of rows in the
Image 1 matrix, the value is clipped to the total number of rows. If
the second element is greater than the number of columns in the
Image 1 matrix, the value is clipped to the total number of columns.

• If you choose Input port, the Location port appears on the block.
The input to this port must be a two-element vector as described for
the Location [row column] parameter.

If, for the Operation parameter, you choose Highlight selected
pixels, the Location source parameter appears on the dialog box.
This parameter is described above.

Fixed-Point Data Types

The following diagram shows the data types used in the Compositing
block for fixed-point signals. It is only applicable when the Operation
parameter is set to Blend.

2-258

Compositing

You can set the product output, accumulator, and output data types in
the block mask as discussed in the next section.

2-259

Compositing

Dialog
Box

The Main pane of the Compositing dialog box appears as shown in
the following figure.

2-260

Compositing

Operation
Specify the operation you want the block to perform. If you choose
Blend, the block linearly combines the pixels of one image with
another image. If you choose Binary mask, the block overwrites
the pixel values of one image with the pixel values of another
image. If you choose Highlight selected pixel, the block uses
the binary image input at the Mask port to determine which
pixels are set to the maximum value supported by their data type.

Opacity factor(s) source
Indicate where to specify the opacity factor(s). Your choices are
Specify via dialog and Input port. This parameter is visible
if, for the Operation parameter you choose Blend.

Opacity factor(s)
Define the amount by which the block scales each pixel value
before combining them. You can enter a scalar value used for all
pixels or a matrix of values that defines the factor for each pixel.
This parameter is visible if, for the Opacity factor(s) source
parameter you choose Specify via dialog. Tunable.

Mask source
Indicate where to specify the masking factor(s). Your choices are
Specify via dialog and Input port. This parameter is visible
if, for the Operation parameter you choose Binary mask.

Mask
Define which pixels are overwritten. You can enter 0 or 1, which
is used for all pixels, or a matrix of 0s and 1s that defines the
factor for each pixel. This parameter is visible if, for the Mask
source parameter you choose Specify via dialog. Tunable.

Location source
Use this parameter to specify where to enter the location of the
upper-left corner of the image input at port I2. Your choices are
Specify via dialog and Input port.

Location [row column]
Enter a two-element vector that specifies the row and column
position of the upper-left corner of the image input at port Image

2-261

Compositing

2 relative to the upper-left corner of the image input at port
Image 1. This parameter is visible if, for the Location source
parameter you choose Specify via dialog. Tunable.

The Data Types pane of the Compositing dialog box appears as follows.
These parameters are applicable only when the Operation parameter
is set to Blend.

2-262

Compositing

2-263

Compositing

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Opacity factor
Choose how to specify the word length and fraction length of the
opacity factor:

• When you select Same word length as input, these
characteristics match those of the input to the block.

• When you select Specify word length, enter the word length
of the opacity factor.

• When you select Binary point scaling, you can enter the
word length of the opacity factor, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, of the opacity factor. The bias of all signals
in the Video and Image Processing Blockset software is 0.

Product output

As depicted in the previous figure, the output of the multiplier is
placed into the product output data type and scaling. Use this
parameter to specify how to designate this product output word
and fraction lengths.

• When you select Same as first input, these characteristics
match those of the input to the block.

2-264

Compositing

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

Accumulator

As depicted in the previous figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as first input, these characteristics
match those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
software software is 0.

2-265

Compositing

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as first input, these characteristics
match those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset software
is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also Insert Text Video and Image Processing Blockset
software

2-266

Contrast Adjustment

Purpose Adjust image contrast by linearly scaling pixel values

Library Analysis & Enhancement

vipanalysis

Description

The Contrast Adjustment block adjusts the contrast of an image by
linearly scaling the pixel values between upper and lower limits. Pixel
values that are above or below this range are saturated to the upper
or lower limit value, respectively.

2-267

Contrast Adjustment

�!!!

�!!!

�!!!

�
!!

!

�

�!!

!

�
!

�

�!!

�!!

�
!

��

"�$���������"���� -�����������"����

"�$���(������"���� -�����(������"����

,:���� �
�������
���
������
�$��
�������
����;

��
����$��:����:�����������

�$���������
����������
�����
#
���
���$��:����:�����������

�$����������
�����;

4���
� �
��

4���
� �
��

+��9����������
�

+��9����������
�

Mathematically, the contrast adjustment operation is described by the
following equation, where the input limits are [low_in high_in] and the
output limits are [low_out high_out]:

Output

low out Input low in

low out Input low in
high out=

≤

+ − −
_ , _

_ (_)
_ llow out

high in low in
low in Input high in

high out Input

_
_ _

, _ _

_ ,
−

< <

≥ hhigh in_

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

2-268

Contrast Adjustment

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

Output Scalar, vector, or matrix
of intensity values or a
scalar, vector, or matrix
that represents one plane
of the RGB video stream

Same as I port No

Specifying upper and lower limits

Use the Adjust pixel values from and Adjust pixel values to
parameters to specify the upper and lower input and output limits.
All options are described below.

Input limits
Use the Adjust pixel values from parameter to specify the upper and
lower input limits.

If you select Full input data range [min max], uses the
minimum input value as the lower input limit and the maximum
input value as the upper input limit.

If you select User-defined, the Range [low high] parameter
associated with this option appears. Enter a two-element vector of
scalar values, where the first element corresponds to the lower input
limit and the second element corresponds to the upper input limit.

If you select Range determined by saturating outlier pixels,
the Percentage of pixels to saturate [low high] (in %), Specify
number of histogram bins (used to calculate the range when

2-269

Contrast Adjustment

outliers are eliminated), and Number of histogram bins
parameters appear on the block. The block uses these parameter
values to calculate the input limits in this three-step process:

1 Find the minimum and maximum input values, [min_in max_in].

2 Scale the pixel values from [min_in max_in] to [0 num_bins-1],
where num_bins is the scalar value you specify in the Number of
histogram bins parameter. This parameter always displays the
value used by the block. Then the block calculates the histogram of
the scaled input. For additional information about histograms, see
the Histogram block reference page.

3 Find the lower input limit such that the percentage of pixels with
values smaller than the lower limit is at most the value of the first
element of the Percentage of pixels to saturate [low high] (in
%) parameter. Similarly, find the upper input limit such that the
percentage of pixels with values greater than the upper limit is at
least the value of the second element of the parameter.

Output limits
Use the Adjust pixel values to parameter to specify the upper and
lower output limits.

If you select Full data type range, the block uses the minimum
value of the input data type as the lower output limit and the
maximum value of the input data type as the upper out

If you select User-defined range, the Range [low high] parameter
appears on the block. Enter a two-element vector of scalar values,
where the first element corresponds to the lower output limit and the
second element corresponds to the upper output limit.

For INF, -INF and NAN Input Values
If any input pixel value is either INF or -INF, the Contrast Adjustment
block will change the pixel value according to how the parameters are
set. The following table shows how the block handles these pixel values.

2-270

Contrast Adjustment

If Adjust pixel values
from parameter is set
to...

Contrast Adjustment block will:

Full data range
[min,max]

Range determined by
saturating outlier pixels

Set the entire output image to the lower
limit of the Adjust pixel values to
parameter setting.

User defined range Lower and higher limits of the Adjust
pixel values to parameter set to -INF
and INF, respectively.

If any input pixel has a NAN value, the block maps the pixels with valid
numerical values according to the user-specified method. It maps the
NAN pixels to the lower limit of the Adjust pixels values to parameter.

Examples

See “Adjusting the Contrast in Intensity Images” in the Video and
Image Processing Blockset User’s Guide.

Fixed-Point Data Types

The following diagram shows the data types used in the Contrast
Adjustment block for fixed-point signals:

2-271

Contrast Adjustment

2-272

Contrast Adjustment

Dialog
Box

The Contrast Adjustment dialog box appears as shown in the following
figure.

Adjust pixel values from
Specify how to enter the upper and lower input limits. Your
choices are Full input data range [min max], User-defined,
and Range determined by saturating outlier pixels.

2-273

Contrast Adjustment

Range [low high]
Enter a two-element vector of scalar values. The first element
corresponds to the lower input limit, and the second element
corresponds to the upper input limit. This parameter is visible
if, for the Adjust pixel values from parameter, you select
User-defined.

Percentage of pixels to saturate [low high] (in %)
Enter a two-element vector. The block calculates the lower input
limit such that the percentage of pixels with values smaller
than the lower limit is at most the value of the first element. It
calculates the upper input limit similarly. This parameter is
visible if, for the Adjust pixel values from parameter, you select
Range determined by saturating outlier pixels.

Specify number of histogram bins (used to calculate the range
when outliers are eliminated)

Select this check box to change the number of histogram bins.
This parameter is editable if, for the Adjust pixel values
from parameter, you select Range determined by saturating
outlier pixels.

Number of histogram bins
Enter the number of histogram bins to use to calculate the scaled
input values. This parameter is available if you select the Specify
number of histogram bins (used to calculate the range
when outliers are eliminated) check box.

Adjust pixel values to
Specify the upper and lower output limits. If you select Full data
type range, the block uses the minimum value of the input data
type as the lower output limit and the maximum value of the input
data type as the upper output limit. If you select User-defined
range, the Range [low high] parameter appears on the block.

Range [low high]
Enter a two-element vector of scalar values. The first element
corresponds to the lower output limit and the second element
corresponds to the upper output limit. This parameter is

2-274

Contrast Adjustment

visible if, for the Adjust pixel values to parameter, you select
User-defined range

The Data Types pane of the Contrast Adjustment dialog box appears
as shown in the following figure.

Rounding mode
Select the rounding mode for fixed-point operations.

2-275

Contrast Adjustment

Overflow mode
Select the overflow mode for fixed-point operations.

Product 1
The product output type when the block calculates the ratio
between the input data range and the number of histogram bins.

�����=/��
)-",�4"�/2

4�������������
������#��

������
����
������#��

As shown in the previous figure, the output of the multiplier is
placed into the product output data type and scaling. Use this
parameter to specify how to designate this product output word
and fraction lengths:

When you select Binary point scaling, you can enter the word
length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

Product 2
The product output type when the block calculates the bin location
of each input value.

�����=/��
)-",�4"�/2

4�������������
������#��

������
����
������#��

2-276

Contrast Adjustment

As shown in the previous figure, the output of the multiplier is
placed into the product output data type and scaling. Use this
parameter to specify how to designate this product output word
and fraction lengths:

When you select Binary point scaling, you can enter the word
length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

This parameter is visible if, for the Adjust pixel values from
parameter, you select Range determined by saturating
outlier pixels.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also Histogram Video and Image Processing Blockset
software

Histogram
Equalization

Video and Image Processing Blockset
software

2-277

Corner Detection

Purpose Calculate corner metric matrix and find corners in images

Library Analysis & Enhancement

vipanalysis

Description

The Corner Detection block finds corners in an image using the Harris
corner detection, minimum eigenvalue, or local intensity comparison
method. The block finds the corners in the image based on the pixels
that have the largest corner metric values.

For the most accurate results, use the “Minimum Eigenvalue Method”
on page 2-279. For the fastest computation, use the “Local Intensity
Comparison” on page 2-280. For the trade-off between accuracy and
computation, use the “Harris Corner Detection Method” on page 2-279.

Input/Output Description

I Matrix of intensity values

Loc 2-by-N matrix that represents the locations of the corners where
N is the maximum number of corners

Count Scalar value that represents the number of detected corners

Metric Matrix of corner metric values that is the same size as the input
image

2-278

Corner Detection

Minimum Eigenvalue Method

This method is more computationally expensive than the Harris corner
detection algorithm because it directly calculates the eigenvalues of the
sum of the squared difference matrix, M.

The sum of the squared difference matrix, M, is defined as follows:

M
A C
C B

=
⎡

⎣
⎢

⎤

⎦
⎥

The previous equation is based on the following values:

A I w

B I w

C I I w

x

y

x y

= ⊗

= ⊗

= ⊗

()

()

()

2

2

2

where Ix and Iy are the gradients of the input image, I, in the x and y
direction, respectively. The ⊗ symbol denotes a convolution operation.

Use the Coefficients for separable smoothing filter parameter to
define a vector of filter coefficients. The block multiplies this vector of
coefficients by its transpose to create a matrix of filter coefficients, w.

The block calculates the smaller eigenvalue of the sum of the squared
difference matrix. This minimum eigenvalue corresponds to the corner
metric matrix.

Harris Corner Detection Method

The Harris corner detection method avoids the explicit computation of
the eigenvalues of the sum of squared differences matrix by solving for
the following corner metric matrix, R:

R AB C k A B= − − +2 2()

A, B, C are defined in the previous section, “Minimum Eigenvalue
Method” on page 2-279.

2-279

Corner Detection

The variable k corresponds to the sensitivity factor. You can specify
its value using the Sensitivity factor (0<k<0.25) parameter. The
smaller the value of k, the more likely it is that the algorithm can detect
sharp corners.

Use the Coefficients for separable smoothing filter parameter to
define a vector of filter coefficients. The block multiplies this vector of
coefficients by its transpose to create a matrix of filter coefficients, w.

Local Intensity Comparison

This method determines that a pixel is a possible corner if it has
either, N contiguous valid bright surrounding pixels, or N contiguous
dark surrounding pixels. Specifying the value of N is discussed later
in this section. The next section explains how the block finds these
surrounding pixels.

Suppose that p is the pixel under consideration and j is one of the
pixels surrounding p. The locations of the other surrounding pixels are
denoted by the shaded areas in the following figure.

2-280

Corner Detection

#
$���������%
��&��

'�&��������

������������

�

(�%��

Ip and I j are the intensities of pixels p and j, respectively. Pixel j is a

valid bright surrounding pixel if I I Tj p− ≥ . Similarly, pixel j is a valid

dark surrounding pixel if I I Tp j− ≥ . In these equations, T is the value
you specified for the Intensity comparison threshold parameter.

The block repeats this process to determine whether the block has N
contiguous valid surrounding pixels. The value of N is related to the
value you specify for theMaximum angle to be considered a corner
(in degrees), as shown in the following table.

2-281

Corner Detection

Number of Valid
Surrounding Pixels, N

Angle (degrees)

15 22.5

14 45

13 67.5

12 90

11 112.5

10 135

9 157.5

After the block determines that a pixel is a possible corner, it computes
its corner metric using the following equation:

R I I T I I Tp j p j
j I I Tj I I T j pj p

= − − − −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

≤ −≥ +
∑∑max , ,

::

Block Output

Use the Output parameter to determine whether the block outputs
the corner location, corner location and metric matrix, or the metric
matrix. The block outputs the corner locations in a 2-by-N matrix where
each row stores the row and column locations of the corners and N is
the maximum number of corners. The block outputs the corner metric
values in a matrix that is the same size as the input image.

If you set the Output parameter to Corner location or Corner
location and metric matrix, the Maximum number of
corners, Minimum metric value that indicates a corner, and
Neighborhood size (suppress region around detected corners)
parameters appear on the block.

To determine the final corner values, the block follows this process:

1 Find the pixel with the largest corner metric value.

2-282

Corner Detection

2 Verify that the metric value is greater than or equal to the value
you specified for the Minimum metric value that indicates a
corner parameter.

3 Suppress the region around the corner value by the size defined
in the Neighborhood size (suppress region around detected
corners) parameter.

The block repeats this process until it finds all the corners in the
image or it finds the number of corners you specified in the Maximum
number of corners parameter.

Fixed-Point Data Types

The following diagram shows the data types used in the Corner
Detection block for fixed-point signals. These diagrams apply to the
Harris corner detection and minimum eigenvalue methods only.

2-283

Corner Detection

The following table summarizes the variables used in the previous
diagrams.

Variable Name Definition

IN_DT Input data type

MEM_DT Memory data type

OUT_DT Metric output data type

COEF_DT Coefficients data type

2-284

Corner Detection

Dialog
Box

The Corner Detection dialog box appears as shown in the following
figure.

2-285

Corner Detection

Method
Specify the method to use to find the corner values. Your
choices are Harris corner detection (Harris & Stephens),
Minimum eigenvalue (Shi & Tomasi), and Local intensity
comparison (Rosen & Drummond).

Sensitivity factor (0<k<0.25)
Specify the sensitivity factor, k. The smaller the value of k
the more likely the algorithm is to detect sharp corners. This
parameter is visible if you set the Method parameter to Harris
corner detection (Harris & Stephens). This parameter is
tunable.

Coefficients for separable smoothing filter
Specify a vector of filter coefficients for the smoothing filter.
This parameter is visible if you set the Method parameter to
Harris corner detection (Harris & Stephens) or Minimum
eigenvalue (Shi & Tomasi).

Intensity comparison threshold
Specify the threshold value used to find valid surrounding pixels.
This parameter is visible if you set the Method parameter to
Local intensity comparison (Rosen & Drummond). This
parameter is tunable.

Maximum angle to be considered a corner (in degrees)
Specify the maximum corner angle. This parameter is visible if
you set theMethod parameter to Local intensity comparison
(Rosen & Drummond). This parameter is tunable for Simulation
only.

Output
Specify the block output. Your choices are Corner location,
Corner location and metric matrix, and Metric matrix.

Maximum number of corners
Enter the maximum number of corners you want the block to
find. This parameter is visible if you set the Output parameter to
Corner location or Corner location and metric matrix.

2-286

Corner Detection

Minimum metric value that indicates a corner
Specify the minimum corner metric value. This parameter is
visible if you set the Output parameter to Corner location
or Corner location and metric matrix. This parameter is
tunable.

Neighborhood size (suppress region around detected corners)
Specify the size of the neighborhood around the corner metric
value over which the block zeros out the values. Enter a
two-element vector of positive odd integers, [r c]. Here, r is
the number of rows in the neighborhood and c is the number
of columns. This parameter is visible if you set the Output
parameter to Corner location or Corner location and metric
matrix.

The Data Types pane of the Corner Detection dialog box appears as
shown in the following figure.

2-287

Corner Detection

Rounding mode
Select the rounding mode for fixed-point operations.

2-288

Corner Detection

Overflow mode
Select the overflow mode for fixed-point operations.

Coefficients
Choose how to specify the word length and the fraction length
of the coefficients:

• When you select Same word length as input, the word length
of the coefficients match that of the input to the block. In this
mode, the fraction length of the coefficients is automatically
set to the binary-point only scaling that provides you with the
best precision possible given the value and word length of the
coefficients.

• When you select Specify word length, you can enter the word
length of the coefficients, in bits. The block automatically sets
the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the coefficients, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the coefficients. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

Product output
As shown in the following figure, the output of the multiplier is
placed into the product output data type and scaling.

)-",�4"�/2

������������#��
4��������������������#��

'������������������#��

Use this parameter to specify how to designate the product output
word and fraction lengths.

• When you select Same as input, these characteristics match
those of the input to the block.

2-289

Corner Detection

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

Accumulator
As shown in the following figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the
input is added to it.

'�0,
���������������&
������������#��

�../2

������
����
������#��

,:������
��������:�����������������
����:��������
�����������#��;

������
����
������#��

Use this parameter to specify how to designate this accumulator
word and fraction lengths:

• When you select Same as input, these characteristics match
those of the input.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
software is 0.

2-290

Corner Detection

Memory
Choose how to specify the memory word length and fraction
length:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. This block
requires power-of-two slope and a bias of 0.

Metric output
Choose how to specify the metric output word length and fraction
length:

• When you select Same as accumulator, these characteristics
match those of the accumulator.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. This block
requires power-of-two slope and a bias of 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] C. Harris and M. Stephens. “A Combined Corner and Edge
Detector.” Proceedings of the 4th Alvey Vision Conference. August 1988,
pp. 147-151.

2-291

Corner Detection

[2] J. Shi and C. Tomasi. “Good Features to Track.” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. June
1994, pp. 593–600.

[3] E. Rosten and T. Drummond. “Fusing Points and Lines for
High Performance Tracking.” Proceedings of the IEEE International
Conference on Computer Vision Vol. 2 (October 2005): pp. 1508–1511.

Supported
Data
Types

Port Supported Data Types

I • Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

Loc 32-bit unsigned integer

Count 32-bit unsigned integer

Metric Same as I port

See Also Find Local Maxima Video and Image Processing Blockset
software

Estimate Geometric
Transformation

Video and Image Processing Blockset
software

2-292

Deinterlacing

Purpose Remove motion artifacts by deinterlacing input video signal

Library Analysis & Enhancement

Description The Deinterlacing block takes the input signal, which is the combination
of the top and bottom fields of the interlaced video, and converts it into
deinterlaced video using line repetition, linear interpolation, or vertical
temporal median filtering.

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Combination of top and
bottom fields of interlaced
video

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned
integer

No

Output Frames of deinterlaced
video

Same as Input port No

Use the Deinterlacing method parameter to specify how the block
deinterlaces the video.

The following figure illustrates the block’s behavior if you select Line
repetition.

2-293

Deinterlacing

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

,���>��
�

"����2���������

�������������������������%�����������������������'

*�����������������������?������������������������

)�����������������������+�����������������������(

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

%������>��
�

.������������������������/�����������������������>

@�����������������������A�����������������������"

4�����������������������1�����������������������2

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

�������������������������%�����������������������'

*�����������������������?������������������������

)�����������������������+�����������������������(

%
��7�(������&�.������
����������

�������������������������%�����������������������'

*�����������������������?������������������������

)�����������������������+�����������������������(

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

�������������������������%�����������������������'

*�����������������������?�������������������������

)�����������������������+�����������������������(

%
��7������

.������������������������/�����������������������>

@������������������������A������������������������"

4�����������������������1�����������������������2

(������
������
����������

The following figure illustrates the block’s behavior if you select Linear
interpolation.

2-294

Deinterlacing

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

,���>��
�

"�������������
�����

�������������������������%�����������������������'

*�����������������������?������������������������

)�����������������������+�����������������������(

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

%������>��
�

.������������������������/�����������������������>

@�����������������������A�����������������������"

4�����������������������1�����������������������2

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

�������������������������%�����������������������'

*�����������������������?������������������������

)�����������������������+�����������������������(

B�<*C5�������������B%<?C5��������������B'<�C5�

)�����������������������+�����������������������(

B*<)C5�������������B?<+C5��������������B�<(C5�

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

�������������������������%�����������������������'

*�����������������������?�������������������������

)�����������������������+�����������������������(

%
��7������

.������������������������/�����������������������>

4�����������������������1�����������������������2

%
��7�(������&�.������
����������

@������������������������A������������������������"

(������
������
����������

The following figure illustrates the block’s behavior if you select
Vertical temporal median filtering.

2-295

Deinterlacing

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

,���>��
�

�������
�,������
�)������>�
������

�������������������������%�����������������������'

*�����������������������?������������������������

)�����������������������+�����������������������(

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

%������>��
�

.������������������������/�����������������������>

@�����������������������A�����������������������"

4�����������������������1�����������������������2

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

����������������������������%�������������������������'

*��������������������������?���������������������������

)��������������������������+��������������������������(

������BD�E.E*FC���������BD%E/E?FC���������BD'E>E�FC

)��������������������������+��������������������������(

2�$��

2�$��

2�$��

2�$��

2�$�

2�$�	

�������������������������%�����������������������'

*�����������������������?�������������������������

)�����������������������+�����������������������(

%
��7������

.������������������������/�����������������������>

4�����������������������1�����������������������2

@������������������������A������������������������"

%
��7�(������&�.������
����������

(������
������
����������

������BD*E@E)FC���������BD?EAE+FC���������BD�E"E(FC

Row-Major Data Format

The MATLAB enviroment and the Video and Image Processing
Blockset software use column-major data organization. However, the
Deinterlacing block gives you the option to process data that is stored in

2-296

Deinterlacing

row-major format. When you select the Input image is transposed
(data order is row major) check box, the block assumes that the input
buffer contains contiguous data elements from the first row first, then
data elements from the second row second, and so on through the last
row. Use this functionality only when you meet all the following criteria:

• You are developing algorithms to run on an embedded target that
uses the row-major format.

• You want to limit the additional processing required to take
the transpose of signals at the interfaces of the row-major and
column-major systems.

When you use the row-major functionality, you must consider the
following issues:

• When you select this check box, the first two signal dimensions of the
Deinterlacing block’s input are swapped.

• All the Video and Image Processing Blockset blocks can be used to
process data that is in the row-major format, but you need to know
the image dimensions when you develop your algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify
that your filter coefficients are transposed. If you are using the
Rotate block, you need to use negative rotation angles, etc.

• Only three blocks have the Input image is transposed (data
order is row major) check box. They are the Chroma Resampling,
Deinterlacing, and Insert Text blocks. You need to select this check
box to enable row-major functionality in these blocks. All other blocks
must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major
format to run on an embedded target.

2-297

Deinterlacing

��	��
��
���

����

���������

����

���������

����

���������

�����

������
!������
�����	������

�����"
����������
���#����������#���	
�����
������$�������������
���
��	������
��������������	
��
	���������$%��&���������

'�
�		�	
���������
���

����

��	��
����

����

'�
�		�	
�����������

����

See the DM642 EVM Video ADC and DM642 EVM Video DAC reference
pages in the Target Support Package User’s Guide for more information
about data order in embedded targets.

Example

The following example shows you how to use the Deinterlacing block to
remove motion artifacts from an image.

1 Open the example model by typing

doc_deinterlace

at the MATLAB command prompt.

2 Double-click the Deinterlacing block. The model uses this block
to remove the motion artifacts from the input image. The
Deinterlacing method parameter is set to Vertical temporal
median filtering.

2-298

Deinterlacing

3 Run the model.

The original image that contains the motion artifacts appears in the
Input Image window.

2-299

Deinterlacing

The clearer output image appears in the Output Image window.

2-300

Deinterlacing

Fixed-Point Data Types

The following diagram shows the data types used in the Deinterlacing
block for fixed-point signals.

2-301

Deinterlacing

'�0,
������������#�� �../2

������
����
������#��

,:������
��������:�����������������
����:��������
�����������#��;

������
����
������#��

2�*?,�0?�>, '�0,

(�����
������#��

������
����
������#��

You can set the product output, accumulator, and output data types in
the block mask as discussed in the next section.

Dialog
Box

The Main pane of the Deinterlacing dialog box appears as shown in
the following figure.

2-302

Deinterlacing

Deinterlacing method
Specify how the block deinterlaces the video. Your choices
are Line repetition, Linear interpolation, or Vertical
temporal median filtering.

Input image is transposed (data order is row major)
When you select this check box, the block assumes that the input
buffer contains data elements from the first row first, then data
elements from the second row second, and so on through the last
row.

The Data Types pane of the Deinterlacing dialog box appears as shown
in the following figure.

2-303

Deinterlacing

Note The parameters on the Data Types pane are only available if,
for the Deinterlacing method, you select Linear interpolation.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

2-304

Deinterlacing

Accumulator

'�0,
���������������&
������������#��

�../2

������
����
������#��

,:������
��������:�����������������
����:��������
�����������#��;

������
����
������#��

As depicted in the previous figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths:

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as input, these characteristics match
those of the input.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Output
Choose how to specify the output word length and fraction length:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

2-305

Deinterlacing

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. This block
requires power-of-two slope and a bias of 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

2-306

Demosaic

Purpose Demosaic Bayer’s format images

Library Conversions

vipconversions

Description

The following figure illustrates a 4-by-4 image in Bayer’s format with
each pixel labeled R, G, or B.

% * % *

* 2 2*

% * % *

* 2 2*

The Demosaic block takes in images in Bayer’s format and outputs RGB
images. The block performs this operation using a gradient-corrected
linear interpolation algorithm or a bilinear interpolation algorithm.

2-307

Demosaic

Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity values

• If, for the Interpolation
algorithm parameter,
you select Bilinear,
the number of rows and
columns must be greater
than or equal to 3.

• If, for the Interpolation
algorithm
parameter, you select
Gradient-corrected
linear, the number of
rows and columns must
be greater than or equal
to 5.

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned
integer

No

R, G, B Matrix that represents one
plane of the input RGB
video stream. Outputs from
the R, G, or B ports have
the same data type.

Same as I port No

Image M-by-N matrix of intensity
values or an M-by-N-by-P
color video signal where P is
the number of color planes.

Same as I port No

Use the Interpolation algorithm parameter to specify the algorithm
the block uses to calculate the missing color information. If you select
Bilinear, the block spatially averages neighboring pixels to calculate
the color information. If you select Gradient-corrected linear, the
block uses a Weiner approach to minimize the mean-squared error in

2-308

Demosaic

the interpolation. This method performs well on the edges of objects in
the image. For more information, see [1].

Use the Sensor alignment parameter to specify the alignment of the
input image. Select the sequence of R, G and B pixels that correspond to
the 2-by-2 block of pixels in the top-left corner of the image. You specify
the sequence in left-to-right, top-to-bottom order. For example, for the
image at the beginning of this reference page, you would select BGGR.

Both methods use symmetric padding at the image boundaries. For
more information, see the Image Pad block reference page.

Use the Output image signal parameter to specify how to output a
color video signal. If you select One multidimensional signal, the
block outputs an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Fixed-Point Data Types

The following diagram shows the data types used in the Demosaic block
for fixed-point signals.

)-",�4"�/2

�����
�������#��

������
�������
4�������������
������#��

'�0, �../2

������
����
������#��

������
����
�������#��

,:������
��������:�����������������
����:��������
�����������#��;

'�0,

�����
�������#��

(�����
�������#��

You can set the product output and accumulator data types in the block
mask as discussed in the next section.

2-309

Demosaic

Dialog
Box

The Main pane of the Demosaic dialog box appears as shown in the
following figure.

Interpolation algorithm
Specify the algorithm the block uses to calculate the missing color
information. Your choices are Bilinear or Gradient-corrected
linear.

2-310

Demosaic

Sensor alignment
Select the sequence of R, G and B pixels that correspond to the
2-by-2 block of pixels in the top left corner of the image. You
specify the sequence in left-to-right, top-to-bottom order.

Output image signal
Specify how to output a color video signal. If you select One
multidimensional signal, the block outputs an M-by-N-by-P
color video signal, where P is the number of color planes, at one
port. If you select Separate color signals, additional ports
appear on the block. Each port outputs one M-by-N plane of an
RGB video stream.

The Data Types pane of the Demosaic dialog box appears as shown in
the following figure.

2-311

Demosaic

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

2-312

Demosaic

Product output

�����=/��
)-",�4"�/2

4�������������
������#��

������
����
������#��

As depicted in the previous figure, the output of the multiplier is
placed into the product output data type and scaling. Use this
parameter to specify how to designate this product output word
and fraction lengths:

When you select Same as input, these characteristics match
those of the input to the block.

When you select Binary point scaling, you can enter the word
length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Accumulator

'�0,
���������������&
������������#��

�../2

������
����
������#��

,:������
��������:�����������������
����:��������
�����������#��;

������
����
������#��

As depicted in the previous figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder

2-313

Demosaic

remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths:

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as input, these characteristics match
those of the input.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] Malvar, Henrique S., Li-wei He, and Ross Cutler, “High-Quality
Linear Interpolation for Demosaicing of Bayer-Patterned Color Images,”
Microsoft Research, One Microsoft Way, Redmond, WA 98052

[2] Gunturk, Bahadir K., John Glotzbach, Yucel Altunbasak, Ronald W.
Schafer, and Russel M. Mersereau, “Demosaicking: Color Filter Array
Interpolation,” IEEE Signal Processing Magazine, Vol. 22, Number 1,
January 2005.

2-314

Dilation

Purpose Find local maxima in binary or intensity images

Library Morphological Operations

Description The Dilation block rotates the neighborhood or structuring element 180
degrees. Then it slides the neighborhood or structuring element over
an image, finds the local maxima, and creates the output matrix from
these maximum values. If the neighborhood or structuring element has
a center element, the block places the maxima there, as illustrated in
the following figure.

If the neighborhood or structuring element does not have an exact
center, the block has a bias toward the lower-right corner, as a result
of the rotation. The block places the maxima there, as illustrated in
the following figure.

This block uses flat structuring elements only.

2-315

Dilation

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector ormatrix of intensity
values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned
integer

No

Nhood Matrix or vector of ones and
zeros that represents the
neighborhood values

Boolean No

Output Vector ormatrix of intensity
values that represents the
dilated image

Same as I port No

The output signal has the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to
specify how to enter your neighborhood or structuring element values.
If you select Specify via dialog, the Neighborhood or structuring
element parameter appears in the dialog box. If you select Input
port, the Nhood port appears on the block. Use this port to enter your
neighborhood values as a matrix or vector of 1s and 0s. You can only
specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define
the neighborhood or structuring element that the block applies to the
image. Specify a neighborhood by entering a matrix or vector of 1s and
0s. Specify a structuring element with the strel function from the
Image Processing Toolbox. If the structuring element is decomposable
into smaller elements, the block executes at higher speeds due to the

2-316

Dilation

use of a more efficient algorithm. If you enter an array of STREL
objects, the block applies each object to the entire matrix in turn.

Dialog
Box

The Dilation dialog box appears as shown in the following figure.

Neighborhood or structuring element source
Specify how to enter your neighborhood or structuring element
values. Select Specify via dialog to enter the values in the
dialog box. Select Input port to use the Nhood port to specify the
neighborhood values. You can only specify a structuring element
using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a
matrix or vector of 1s and 0s. If you are specifying a structuring
element, use the strel function from the Image Processing
Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify
via dialog.

2-317

Dilation

References [1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York:
Springer, 2003.

See Also Bottom-hat Video and Image Processing Blockset software

Closing Video and Image Processing Blockset software

Erosion Video and Image Processing Blockset software

Label Video and Image Processing Blockset software

Opening Video and Image Processing Blockset software

Top-hat Video and Image Processing Blockset software

imdilate Image Processing Toolbox software

strel Image Processing Toolbox software

2-318

Draw Markers

Purpose Draw markers by embedding predefined shapes on output image

Library Text & Graphics

Description The Draw Markers block can draw multiple circles, x-marks, plus signs,
stars, or squares on images by overwriting pixel values. Overwriting
the pixel values embeds the shapes.

This block uses Bresenham’s circle drawing algorithm to draw circles
and Bresenham’s line drawing algorithm to draw all other markers.

Port Input/Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity values
or an M-by-N-by-P color values
where P is the number of color
planes

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

R, G, B Scalar, vector, or matrix that
represents one plane of the input
RGB video stream. Inputs to the
R, G, and B ports must have the
same dimensions and data type.

Same as Image port No

2-319

Draw Markers

Port Input/Output Supported Data Types
Complex
Values
Supported

Pts 2-by-N matrix of row and column
pairs,

r r r
c c c

N

N

1 2

1 2

�
�

⎡

⎣
⎢

⎤

⎦
⎥

where N is the total number
of markers and each row and
column pair defines the center of
a marker.

• Double-precision floating
point

• Single-precision floating
point

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

If the input to the Image port
is an integer, fixed point, or
boolean data type, the input to
the Pts port must also be an
integer data type.

No

ROI Four-element vector of integers
that define a rectangular area
in which to draw the markers.
The first two elements represent
the zero-based row and column
coordinates of the upper-left
corner of the area. The second two
elements represent the height and
width of the area.

• Double-precision floating
point

• Single-precision floating
point

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

Clr P-element vector or P-by-N matrix
where P is the number of color
planes

Same as Image port No

Output Scalar, vector, or matrix of pixel
values that contain the marker(s)

Same as Image port No

2-320

Draw Markers

The output signal is the same size and data type as the inputs to the
Image, R, G, and B ports.

Use theMarker shape parameter to specify one of the following types
of markers:

• Circle

• X-mark

• Plus

• Star

• Square

Use the Marker size parameter to define the size of the marker, in
pixels. Enter a scalar value, M, that defines a (2M+1)-by-(2M+1) pixel
square into which the marker fits. M must be greater than or equal to 1.

If, for the Marker shape parameter, you select:

• Circle, X-mark, or Star

and you then select the,

• Use antialiasing check box

the block performs a smoothing algorithm. The Draw Markers block
uses an algorithm similar to the poly2mask function to determine
which subpixels to draw.

Use the Draw markers in parameter to define one of the following
types of areas in which to draw the markers.

• Entire image, enables you to draw markers in the entire image.

• Specify region of interest via port, the ROI port appears
on the block. Enter a four-element vector of integer values, [r c
height width], where r and c are the row and column coordinates
of the upper-left corner of the area, and height and width represent

2-321

Draw Markers

the height (in rows) and width (in columns) of the area. If you specify
values that are outside the image, the block clips the values to the
image boundaries.

Use the Image signal parameter to specify one of the following ways to
input and output a color video signal.

• One multidimensional signal, the block accepts an M-by-N-by-P
color video signal, where P is the number of color planes, at one port.

• Separate color signals, additional ports appear on the block.
Each port accepts one M-by-N plane of an RGB video stream.

Selecting
Marker
Fill and
Border
Colors

You can set the marker fill or border color via the input port or via the
input dialog. Use the color input or color parameter to determine the
appearance of the rectangle(s), line(s), polygon(s), or circle(s).

• “Fill Color” on page 2-322

• “Border Color” on page 2-323

• “Color Values” on page 2-323

• “Opacity Factor” on page 2-323

Fill Color

If you select the Filled check box, the Fill color source, Fill color and
Opacity factor (between 0 and 1) parameters appear in the dialog
box. Use the Fill color source parameter to specify either Input port
or Specify via dialog for the color source. If Specify via dialog
is selected, you can specify either Black, White, or User-specified
value for the Fill color parameter for the shading inside the shape.
The Color value(s) parameter is applicable when the User-specified
value is selected. Use the Opacity factor (between 0 and 1)
parameter to specify the opacity of the shading inside the shape, where
0 is transparent and 1 is opaque.

2-322

Draw Markers

Border Color

If the Filled check box is not selected, the Border color source, and
Border color parameters are available. Use the Border color source
parameter to specify either Input port or Specify via dialog for
the color source. If Specify via dialog is selected, you can specify
either Black, White, or User-specified value for the Border color
parameter. If the color is user specified, the Color value(s) parameter
is used to enter the color.

Color Values

The following table describes what to enter for the Color Value(s)
parameter based on the block input and the number of markers you are
drawing. This parameter is applicable when User-specified value is
selected for the border color source.

Block
Input

Color Value(s) for
Drawing One Marker
or Multiple Markers
with the Same Color

Color Value(s) for
Drawing Multiple
Markers with Unique
Color

Intensity
image

Scalar intensity value R-element vector where R
is the number of markers

Color
image

P-element vector where
P is the number of color
planes

P-by-R matrix where P is
the number of color planes
and R is the number of
markers

For each value in the parameter, enter a number between the minimum
and maximum values that can be represented by the data type of the
input image. If you enter a value outside this range, the block produces
an error message.

Opacity Factor

The following table describes what to enter for the Opacity factor(s)
(between 0 and 1) parameter based on the block input and the number

2-323

Draw Markers

of markers you are drawing. This parameter is applicable when the
Filled check box is selected.

Opacity Factor value for
Drawing One Marker or
Multiple Markers with the
Same Color

Oopacity Factor value for
Drawing Multiple Marker
with Unique Color

Scalar intensity value R-element vector where R is the
number of markers

2-324

Draw Markers

Dialog
Box

The Draw Markers dialog box appears as shown in the following figure.

Marker shape
Specify the type of marker(s) to draw. Your choices are Circle,
X-mark, Plus, Star, or Square.

2-325

Draw Markers

Marker size
Enter a scalar value that represents the size of the marker, in
pixels.

Filled
Select this check box to fill the marker with an intensity value
or a color. This parameter is visible if, for the Marker shape
parameter, you choose Circle or Square.

Fill color source
Specify source for fill color value to either Specify via dialog
or Input port. This parameter is visible if you select the Filled
check box.

Fill color
If you select Black, the marker is black. If you select White, the
marker is white. If you select User-specified value, the Color
value(s) parameter appears in the dialog box. This parameter is
visible if you select the Filled check box.

Border color source
Specify source for the border color value to either Specify via
dialog or Input port. Border color options are visible when the
fill shapes options are not selected. This parameter is visible if
you select the Filled check box.

Border color
Specify the appearance of the shape’s border. If you select Black,
the border is black. If you select White, the border is white. If you
select User-specified value, the Color value(s) parameter
appears in the dialog box. This parameter is visible if you clear
the Fill shapes check box.

Color value(s)
Specify an intensity or color value for the marker’s border or fill.
This parameter is visible if, for the Border color or Fill color
parameter, you select User-specified value. Tunable.

2-326

Draw Markers

Opacity factor (between 0 and 1)
Specify the opacity of the shading inside the marker, where 0
is transparent and 1 is opaque. This parameter is visible if you
select the Filled check box. This parameter is tunable.

Draw markers in
Define the area in which to draw the markers. If you select
Entire image, you can draw markers in the entire image. If you
select Specify region of interest via port, the ROI port
appears on the block. Enter a four-element vector, [r c height
width], where r and c are the row and column coordinates of the
upper-left corner of the area, and height and width represent the
height (in rows) and width (in columns) of the area.

Use antialiasing
Perform a smoothing algorithm on the marker. This parameter is
visible if, for the Marker shape parameter, you select Circle,
X-mark, or Star.

Image signal
Specify how to input and output a color video signal. If you
select One multidimensional signal, the block accepts an
M-by-N-by-P color video signal, where P is the number of color
planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port accepts one
M-by-N plane of an RGB video stream.

See Also Draw Shapes Video and Image Processing
Blockset software

Insert Text Video and Image Processing
Blockset software

2-327

Draw Shape (Obsolete)

Purpose Draw rectangle around region of interest (ROI)

Library vipobslib

Description
Note The Draw Shape block is obsolete. It may be removed in a future
version of the Video and Image Processing Blockset blocks. Use the
replacement block Draw Shapes.

The Draw Shape block draws a rectangle around a user-defined ROI
by overwriting pixel values. As a result, the rectangle is embedded
on the output image.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

• Boolean

No

ROI Four-element vector of integers.
The first two elements represent
the zero-based row and column
coordinates of the upper-left
corner of the ROI. The second two
elements represent the height and
width of the ROI.

• Double-precision floating
point

• Single-precision floating
point

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

2-328

Draw Shape (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

Output Scalar, vector, or matrix of pixel
values that contains the region of
interest

Same as I port No

The output signal is the same size and data type as the input to the I
port.

Use the Display intensity parameter to determine the appearance of
the ROI rectangle. If you select Black or White, the rectangle is black
or white, respectively. If you select Black and white (2 lines),
the rectangle is created by a black line on the outside and a white
line on the inside. If you select User-specified intensity, the
Intensity value (0 to 1) parameter appears in the dialog box. Enter a
scalar intensity value from 0 to 1, where 0 corresponds to black and 1
corresponds to white.

Use the ROI source parameter to determine how to enter your
ROI coordinates. If you select Specify via dialog, the ROI [row
column height width] parameter appears on the dialog box. Enter a
four-element vector of integers. The first two elements represent the
zero-based row and column coordinates of the upper-left corner of the
ROI. The second two elements represent the height and width of the
ROI. If you select Input port, the ROI port appears on the dialog box.
The input to this port must be a four-element of integers as previously
defined.

2-329

Draw Shape (Obsolete)

Dialog
Box

The Draw Shape dialog box appears as shown in the following figure.

Display intensity
Specify the appearance of the ROI rectangle. If you select Black
or White, the rectangle is black or white. If you select Black
and white (2 lines), the rectangle is created by a black line
on the outside and a white line on the inside. If you select
User-specified intensity, the Intensity value (0 to 1)
parameter appears in the dialog box.

Intensity value
Enter a scalar intensity value from 0 to 1, where 0 corresponds
to black and 1 corresponds to white. This parameter is visible if,
for the Display intensity parameter, you select User-specified
intensity. Tunable.

ROI source
Specify how to enter your ROI coordinates. If you select Specify
via dialog, the ROI [row column height width] parameter

2-330

Draw Shape (Obsolete)

appears on the dialog box. If you select Input port, the ROI
port appears on the dialog box. The input to this port must be a
four-element vector of integers. The first two elements represent
the zero-based row and column coordinates of the upper-left
corner of the ROI. The second two elements represent the height
and width of the ROI.

ROI [row column height width]
Enter a four-element vector of integers. The first two elements
represent the zero-based row and column coordinates of the
upper-left corner of the ROI. The second two elements represent
the height and width of the ROI. Tunable.

2-331

Draw Shapes

Purpose Draw rectangles, lines, polygons, or circles on images

Library Text & Graphics

Description The Draw Shapes block draws multiple rectangles, lines, polygons, or
circles on images by overwriting pixel values. As a result, the shapes
are embedded on the output image.

This block uses Bresenham’s line drawing algorithm to draw lines,
polygons, and rectangles. It uses Bresenham’s circle drawing algorithm
to draw circles.

Port Input/Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity values
or an M-by-N-by-P color values
where P is the number of color
planes

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

R, G, B Scalar, vector, or matrix that
represents one plane of the input
RGB video stream. Inputs to the
R, G, and B ports must have the
same dimensions and data type.

Same as Image port No

2-332

Draw Shapes

Port Input/Output Supported Data Types
Complex
Values
Supported

Pts Use integer values to define
zero-based shape coordinates. If
you enter noninteger values, the
block rounds them to the nearest
integer.

For more information about how
to specify shape coordinates for
different shapes, see “Defining
Shapes to Draw” on page 2-337.

• Double-precision floating
point (only supported if the
input to the I or R, G, and
B ports is floating point)

• Single-precision floating
point (only supported if the
input to the I or R, G, and
B ports is floating point)

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

ROI 4-element vector of integers that
defines a rectangular area in
which to draw the shapes. The
first two elements represent
the zero-based row and column
coordinates of the upper-left
corner of the area. The second two
elements represent the height and
width of the area.

• Double-precision floating
point

• Single-precision floating
point

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

Clr P-element vector or P-by-Nmatrix,
where P is the number of color
planes

Same as Image port No

Output Scalar, vector, or matrix of pixel
values that contain the shape(s)

Same as Image port No

The output signal is the same size and data type as the inputs to the
Image, R, G, and B ports.

2-333

Draw Shapes

Use the Shape parameter to specify one of the following types type
of shape(s) to draw.

• Rectangles

• Lines

• Polygons

• Circles

Use the Draw shapes in parameter to define one of the following types
of area in which to draw the shapes.

• Entire image, enables you to draw shapes in the entire image.

• Specify region of interest via port, the ROI port appears on
the block. Enter a four-element vector of integer values, [r c height
width], where r and c are the row and column coordinates of the
upper-left corner of the area, and height and width represent the
height (in rows) and width (in columns) of the area.

Note If you specify values that are outside the image, the block sets
the values to the image boundaries.

If, for the Shape parameter, you select:

• Lines, Polygons, or Circles

and you then select the,

• Use antialiasing check box,

2-334

Draw Shapes

the block performs a smoothing algorithm. The Draw Shapes block uses
an algorithm similar to the poly2mask function to determine which
subpixels to draw.

Use the Image signal parameter to specify one of the following ways to
input and output a color video signal.

• One multidimensional signal, the block accepts an M-by-N-by-P
color video signal, where P is the number of color planes, at one port.

• Separate color signals, additional ports appear on the block.
Each port accepts one M-by-N plane of an RGB video stream.

Selecting Shape Fill and Border Colors

You can set the shape fill or border color via the input port or via the
input dialog. Use the color input or color parameter to determine the
appearance of the rectangle(s), line(s), polygon(s), or circle(s).

• Fill Color on page 335

• Border Color on page 336

• Color Values on page 336

•

Fill Color
If you select the Fill shapes check box, the Fill color source, Fill
color and Opacity factor (between 0 and 1) parameters appear
in the dialog box. Use the Fill color source parameter to specify
either Input port or Specify via dialog for the color source. If
Specify via dialog is selected, you can specify either Black, White,
or User-specified value for the Fill color parameter for the shading
inside the shape. The Color value(s) parameter is applicable when the
User-specified value is selected. Use the Opacity factor (between
0 and 1) parameter to specify the opacity of the shading inside the
shape, where 0 is transparent and 1 is opaque.

2-335

Draw Shapes

Note If you are generating code and you select the Fill shapes check
box, the word length of the block input(s) cannot exceed 16 bits.

Border Color
If the Fill shapes check box is not selected, the Border color source,
and Border color parameters are available. Use the Border color
source parameter to specify either Input port or Specify via
dialog for the color source. If Specify via dialog is selected, you can
specify either Black, White, or User-specified value for the Border
color parameter. If the color is user specified, the Color value(s)
parameter is used to enter the color.

Color Values
The following table describes what to enter for the Color Value(s)
parameter based on the block input and the number of shapes you are
drawing.

Block Input Color Value(s)
for Drawing One
Shape or Multiple
Shapes with the
Same Color

Color Value(s) for
Drawing Multiple
Shapes with
Unique Color

Intensity image Scalar intensity value R-element vector
where R is the
number of shapes

Color image P-element vector
where P is the
number of color
planes

P-by-R matrix where
P is the number of
color planes and R is
the number of shapes

For each value in the Color Value(s) parameter, enter a number
between the minimum and maximum values that can be represented
by the data type of the input image. If you enter a value outside this
range, the block produces an error message.

2-336

Draw Shapes

Opacity Factor
The following table describes what to enter for the Opacity factor(s)
(between 0 and 1) parameter based on the block input and the number
of shapes you are drawing. This parameter is applicable when the
Filled check box is selected.

Opacity Factor value for
Drawing One Shape or
Multiple Shapes with the
Same Color

Oopacity Factor value for
Drawing Multiple Shapes
with Unique Color

Scalar intensity value R-element vector where R is the
number of shapes

Defining Shapes to Draw

This section explains how to use the Shape parameter and the Pts
port to draw the following shapes:

• Drawing Rectangles on page 337

• Drawing Lines and Polylines on page 338

• Drawing Polygons on page 341

• Drawing Circles on page 342

Drawing Rectangles
The Draw Shapes block lets you draw one or more rectangles. Set the
Shape parameter to Rectangles, and then follow the instructions
in the table to specify the input to the Pts port to obtain the desired
number of rectangles.

2-337

Draw Shapes

Shape Input to the Pts Port Drawn Shape

Single Rectangle Four-element row or column vector
[r c height width] where

• r and c are the zero-based row and
column coordinates of the upper-left
corner of the rectangle.

• height and width are the height, in
pixels, and width, in pixels, of the
rectangle. Here, height and width
must be greater than 0.

�����

������������ �����

N Rectangles 4-by-N matrix

r r
c c

height height
width width

N

N

N

N

1

1

1

1

�
�
�
�

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

where each column of the matrix
corresponds to a different rectangle
and is of the same form as the vector
for a single rectangle.

()"

�������

��������������� ������

��!��!�

��!�������!��!� ����!�

For an example of how to use the Draw Shapes block to draw a
rectangle, see “Tracking an Object Using Correlation”.

Drawing Lines and Polylines
The Draw Shapes block lets you draw either a single line, or one or more
polylines, where each polyline is a series of connected line segments.

2-338

Draw Shapes

Set the Shape parameter to Lines, and then follow the instructions in
the table to specify the input to the Pts port to obtain the desired shape.

Shape Input to the Pts Port Drawn Shape

Single Line Four-element row or column vector [r1
c1 r2 c2] where

• r1 and c1 are the row and column
coordinates of the beginning of the
line.

• r2 and c2 are the row and column
coordinates of the end of the line.

�������

�������

N Lines 4-by-N matrix

r r
c c
r r
c c

N

N

N

N

11 1

11 1

21 2

21 2

�
�
�
�

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

where each column of the matrix
corresponds to a different line and is of
the same form as the vector for a single
line.

()"

���������

���������

���!���!�

���!���!�

2-339

Draw Shapes

Shape Input to the Pts Port Drawn Shape

Single Polyline
with L-1
Segments

Vector of size 2L [r1 c1 r2 c2 ...
rL cL] where

• r1 and c1 are the row and column
coordinates of the beginning of the
first line segment.

• r2 and c2 are the row and column
coordinates of the end of the first
line segment and the beginning of
the second line segment

• rL and cL are the row and column
coordinates of the end of the L-1th

line segment.

The block produces an error message if
the number of rows is less than two or
is not a multiple of two.

*)+

�������

�������
��"��"�

�������

��#��#�

N Polylines
with the largest
number of line
segments in any
line being L-1

2L-by-N matrix

r r
c c
r r
c c

r r
c cL

N

N

N

N

L NL

L

11 1

11 1

12 2

12 2

1

1

�
�
�
�

� � �
�
�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

where each column of the matrix
corresponds to a different polyline and
is of the same form as the vector for a
single polyline. If some polylines are
shorter than others, repeat the ending
coordinates to fill the polyline matrix.

The block produces an error message if
the number of rows is less than two or
is not a multiple of two.

()"#�*)+

���������

���������
���"���"�

���������

���#���#�

��!���!��$
��!#��!#�

��!"��!"�

��!���!��

2-340

Draw Shapes

If you select the Use antialiasing check box, the block applies an edge
smoothing algorithm.

For examples of how to use the Draw Shapes block to draw a line, see
“Finding Lines in Images” and “Measuring an Angle Between Lines”.

Drawing Polygons

The Draw Shapes block lets you draw one or more polygons. Set the
Shape parameter to Polygons, and then follow the instructions in the
table to specify the input to the Pts port to obtain the desired number
of polygons.

Shape Input to the Pts Port Drawn Shape

Single Polygon
with L line
segments

Row or column vector of size 2L [r1 c1
r2 c2 ... rL cL] where

• r1 and c1 are the row and column
coordinates of the beginning of the
first line segment.

• r2 and c2 are the row and column
coordinates of the end of the first
line segment and the beginning of
the second line segment

• rL and cL are the row and column
coordinates of the end of the L-1th

line segment and the beginning of
the Lth line segment.

The block connects [r1 c1] to [rL cL]
to complete the polygon. The block
produces an error if the number of rows
is negative or not a multiple of two.

*)+

�������

�������
��"��"�

�������

��#��#�

2-341

Draw Shapes

Shape Input to the Pts Port Drawn Shape

N Polygons
with the largest
number of line
segments in any
line being L

2L-by-N matrix

r r
c c
r r
c c

r r
c cL

N

N

N

N

L NL

L

11 1

11 1

12 2

12 2

1

1

�
�
�
�

� � �
�
�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

where each column of the matrix
corresponds to a different polygon and
is of the same form as the vector for a
single polygon. If some polygons are
shorter than others, repeat the ending
coordinates to fill the polygon matrix.

The block produces an error message if
the number of rows is less than two or
is not a multiple of two.

()"#�*)+

���������

���������
���"���"�

���������

���#���#�

��!���!��$
��!#��!#�

��!"��!"�

��!���!��

Drawing Circles
The Draw Shapes block lets you draw one or more circles. Set the Shape
parameter to Circles, and then follow the instructions in the table to
specify the input to the Pts port to obtain the desired number of circles.

2-342

Draw Shapes

Shape Input to the Pts Port Drawn Shape

Single Circle Three-element row or column vector
[r c radius] where

• r and c are the row and column
coordinates of the center of the circle.

• radius is the radius of the circle,
which must be greater than 0.

)�����

����%&

N Circles 3-by-N matrix

r r
c c

radius radius

N

N

N

1

1

1

�
�
�

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where each column of the matrix
corresponds to a different circle and
is of the same form as the vector for a
single circle.

()"

)

)

�������

����%&�

��!��!�

����%&!

2-343

Draw Shapes

Dialog
Box

Shape
Specify the type of shape(s) to draw. Your choices are Rectangles,
Lines, Polygons, or Circles.

Fill shapes
Fill the shape with an intensity value or a color.

2-344

Draw Shapes

Fill color source
Specify source for fill color value to either Specify via dialog
or Input port. This parameter is visible if you select the Fill
shapes check box.

Fill color
If you select Black, the border is black. If you select White, the
border is white. If you select User-specified value, the Color
value(s) parameter appears in the dialog box. This parameter is
visible if you select the Fill shapes check box.

Border color source
Specify source for the border color value to either Specify via
dialog or Input port. Border color options are visible when the
fill shapes options are not selected. This parameter is visible if
you select the Fill shapes check box.

Border color
Specify the appearance of the shape’s border. If you select Black,
the border is black. If you select White, the border is white. If you
select User-specified value, the Color value(s) parameter
appears in the dialog box. This parameter is visible if you clear
the Fill shapes check box.

Color value(s)
Specify an intensity or color value for the shape’s border or fill.
This parameter is visible if, for the Border color or Fill color
parameter, you select User-specified value. This parameter
is tunable.

Opacity factor (between 0 and 1)
Specify the opacity of the shading inside the shape, where 0 is
transparent and 1 is opaque. This parameter is visible if you
select the Fill shapes check box.

Draw shapes in
Define the area in which to draw the shapes. If you select
Entire image, you can draw shapes in the entire image. If you
select Specify region of interest via port, the ROI port
appears on the block. Enter a four-element vector, [r c height

2-345

Draw Shapes

width], where r and c are the row and column coordinates of the
upper-left corner of the area, and height and width represent the
height (in rows) and width (in columns) of the area.

Use antialiasing
Perform a smoothing algorithm on the line, polygon, or circle.
This parameter is visible if, for the Shape parameter, you select
Lines, Polygons, or Circles.

Image signal
Specify how to input and output a color video signal. If you
select One multidimensional signal, the block accepts an
M-by-N-by-P color video signal, where P is the number of color
planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port accepts one
M-by-N plane of an RGB video stream.

See Also Draw Markers Video and Image Processing Blockset
software

Insert Text Video and Image Processing Blockset
software

2-346

Edge Detection

Purpose Find edges of objects in images using Sobel, Prewitt, Roberts, or Canny
method

Library Analysis & Enhancement

vipanalysis

Description If, for the Method parameter, you select Sobel, Prewitt, or Roberts,
the Edge Detection block finds the edges in an input image by
approximating the gradient magnitude of the image. The block
convolves the input matrix with the Sobel, Prewitt, or Roberts kernel.
The block outputs two gradient components of the image, which are
the result of this convolution operation. Alternatively, the block can
perform a thresholding operation on the gradient magnitudes and
output a binary image, which is a matrix of Boolean values. If a pixel
value is 1, it is an edge.

If, for the Method parameter, you select Canny, the Edge Detection
block finds edges by looking for the local maxima of the gradient of
the input image. It calculates the gradient using the derivative of the
Gaussian filter. The Canny method uses two thresholds to detect strong
and weak edges. It includes the weak edges in the output only if they
are connected to strong edges. As a result, the method is more robust to
noise, and more likely to detect true weak edges.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity
values

• Double-precision floating point

• Single-precision floating point

• Fixed point (not supported for the
Canny method)

• 8-, 16-, 32-bit signed integer (not
supported for the Canny method)

No

2-347

Edge Detection

Port Input/Output Supported Data Types
Complex
Values
Supported

• 8-, 16-, 32-bit unsigned integer (not
supported for the Canny method)

Th Matrix of intensity
values

Same as I port No

Edge Matrix that represents
a binary image

Boolean No

Gv Matrix of gradient
values in the vertical
direction

Same as I port No

Gh Matrix of gradient
values in the horizontal
direction

Same as I port No

G45 Matrix of gradient
values

Same as I port No

G135 Matrix of gradient
values

Same as I port No

The output of the Gv, Gh, G45, and G135 ports is the same data type
as the input to the I port. The input to the Th port must be the same
data type as the input to the I port.

Use the Method parameter to specify which algorithm to use to find
edges. You can select Sobel, Prewitt, Roberts, or Canny to find edges
using the Sobel, Prewitt, Roberts, or Canny method.

Sobel, Prewitt, and Roberts Methods

Use the Output type parameter to select the format of the output. If
you select Binary image, the block outputs a Boolean matrix at the
Edge port. The nonzero elements of this matrix correspond to the edge
pixels and the zero elements correspond to the background pixels. If
you select Gradient components and, for theMethod parameter, you

2-348

Edge Detection

select Sobel or Prewitt, the block outputs the gradient components
that correspond to the horizontal and vertical edge responses at the Gh
and Gv ports, respectively. If you select Gradient components and,
for the Method parameter, you select Roberts, the block outputs the
gradient components that correspond to the 45 and 135 degree edge
responses at the G45 and G135 ports, respectively. If you select Binary
image and gradient components, the block outputs both the binary
image and the gradient components of the image.

Select the User-defined threshold check box to define a threshold
values or values. If you clear this check box, the block computes the
threshold for you.

Use the Threshold source parameter to specify how to enter your
threshold value. If you select Specify via dialog, the Threshold
parameter appears in the dialog box. Enter a threshold value that is
within the range of your input data. If you choose Input port, use
input port Th to specify a threshold value. This value must have the
same data type as the input data. Gradient magnitudes above the
threshold value correspond to edges.

The Edge Detection block computes the automatic threshold using the
mean of the gradient magnitude squared image. However, you can
adjust this threshold using the Threshold scale factor (used to
automatically calculate threshold value) parameter. The block
multiplies the value you enter with the automatic threshold value to
determine a new threshold value.

Select the Edge thinning check box to reduce the thickness of the
edges in your output image. This option requires additional processing
time and memory resources.

Note This block is most efficient in terms of memory usage and
processing time when you clear the Edge thinning check box and use
the Threshold parameter to specify a threshold value.

2-349

Edge Detection

Canny Method

Select the User-defined threshold check box to define the low and
high threshold values. If you clear this check box, the block computes
the threshold values for you.

Use the Threshold source parameter to specify how to enter your
threshold values. If you select Specify via dialog, the Threshold
[low high] parameter appears in the dialog box. Enter the threshold
values. If a pixel’s magnitude in the gradient image, which is formed
by convolving the input image with the derivative of the Gaussian
filter, exceeds the high threshold, then the pixel corresponds to a strong
edge. Any pixel connected to a strong edge and having a magnitude
greater than the low threshold corresponds to a weak edge. If, for the
Threshold source parameter, you choose Input port, use input port
Th to specify a two-element vector of threshold values. These values
must have the same data type as the input data.

The Edge Detection block computes the automatic threshold values
using an approximation of the number of weak and nonedge image
pixels. Enter this approximation for the Approximate percentage of
weak edge and nonedge pixels (used to automatically calculate
threshold values) parameter.

Use the Standard deviation of Gaussian filter parameter to define
the Gaussian filter whose derivative is convolved with the input image.

Fixed-Point Data Types

The following diagram shows the data types used in the Edge Detection
block for fixed-point signals.

2-350

Edge Detection

�../2
������
����
������#��

,:������
��������:�����������������
����:��������
�����������#��;

'�0,
(�����
�������#��

������
����
������#��

'�0,
4�������������
������#��

)-",�4"�/2
�����
������#��

The block squares the threshold and compares it to the sum of the
squared gradients to avoid using square roots.

,:���:�
�8

*��������8

������
����
������#��

'�0,
4�������������
������#��

)-",�4"�/2
�����
������#��

������
����
������#��

'�0,
4�������������
������#��

)-",�4"�/2
������
����
������#��

������
����
������#��

'�0,
4�������������
������#��

)-",�4"�/2
������
����
������#��

�../2
������
����
������#��

2-351

Edge Detection

You can set the product output and accumulator data types in the block
mask as discussed in the next section.

Dialog
Box

The Main pane of the Edge Detection dialog box appears as shown in
the following figure.

2-352

Edge Detection

Method
Select the method by which to perform edge detection. Your
choices are Sobel, Prewitt, Roberts, or Canny.

Output type
Select the desired form of the output. If you select Binary
image, the block outputs a matrix that is filled with ones,
which correspond to edges, and zeros, which correspond to the
background. If you select Gradient components and, for the
Method parameter, you select Sobel or Prewitt, the block
outputs the gradient components that correspond to the horizontal
and vertical edge responses. If you select Gradient components
and, for the Method parameter, you select Roberts, the block
outputs the gradient components that correspond to the 45 and
135 degree edge responses. If you select Binary image and
gradient components, the block outputs both the binary image
and the gradient components of the image. This parameter is
visible if, for theMethod parameter, you select Sobel, Prewitt,
or Roberts.

User-defined threshold
If you select this check box, you can enter a desired threshold
value. If you clear this check box, the block computes the
threshold for you. This parameter is visible if, for the Method
parameter, you select Sobel, Prewitt, or Roberts, and, for the
Output type parameter, you select Binary image or Binary
image and gradient components. This parameter is also visible
if, for the Method parameter, you select Canny.

Threshold source
If you select Specify via dialog, enter your threshold value in
the dialog box. If you choose Input port, use the Th input port to
specify a threshold value that is the same data type as the input
data. This parameter is visible if you select the User-defined
threshold check box.

Threshold
Enter a threshold value that is within the range of your input
data. This parameter is visible if, for theMethod parameter, you

2-353

Edge Detection

select Sobel, Prewitt, or Roberts, you select the User-defined
threshold check box, and, for Threshold source parameter, you
select Specify via dialog. .

Threshold [low high]
Enter the low and high threshold values that define the weak
and strong edges. This parameter is visible if, for the Method
parameter, you select Canny. Then you select the User-defined
threshold check box, and, for Threshold source parameter, you
select Specify via dialog. Tunable.

Threshold scale factor (used to automatically calculate
threshold value)

Enter a multiplier that is used to adjust the calculation of the
automatic threshold. This parameter is visible if, for theMethod
parameter, you select Sobel, Prewitt, or Roberts, and you clear
the User-defined threshold check box. Tunable.

Edge thinning
Select this check box if you want the block to perform edge
thinning. This option requires additional processing time and
memory resources. This parameter is visible if, for the Method
parameter, you select Sobel, Prewitt, or Roberts, and for the
Output type parameter, you select Binary image or Binary
image and gradient components.

Approximate percentage of weak edge and nonedge pixels (used
to automatically calculate threshold values)

Enter the approximate percentage of weak edge and nonedge
image pixels. The block computes the automatic threshold values
using this approximation. This parameter is visible if, for the
Method parameter, you select Canny. Tunable.

Standard deviation of Gaussian filter
Enter the standard deviation of the Gaussian filter whose
derivative is convolved with the input image. This parameter is
visible if, for theMethod parameter, you select Canny.

2-354

Edge Detection

The Data Types pane of the Edge Detection dialog box appears
as shown in the following figure.

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

2-355

Edge Detection

Product output

4�������������
������#��

)-",�4"�/2

�������
�������������G
������#��

4�������������
������#��

)-",�4"�/2
������
����
������#��

��������#��

Here, the internal coefficients are the Sobel, Prewitt, or Roberts
masks. As depicted in the previous figure, the output of the
multiplier is placed into the product output data type and scaling.
Use this parameter to specify how to designate this product
output word and fraction lengths.

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

2-356

Edge Detection

Accumulator

As depicted in the previous figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Gradients
Choose how to specify the word length and fraction length of the
outputs of the Gv and Gh ports. This parameter is visible if, for
the Output type parameter, you choose Gradient components
or Binary image and gradient components:

2-357

Edge Detection

• When you select Same as accumulator, these characteristics
match those of the accumulator.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] Gonzales, Rafael C. and Richard E. Woods. Digital Image
Processing. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.

[2] Pratt, William K. Digital Image Processing, 2nd ed. New York: John
Wiley & Sons, 1991.

See Also edge Image Processing Toolbox

2-358

Erosion

Purpose Find local minima in binary or intensity images

Library Morphological Operations

Description The Erosion block slides the neighborhood or structuring element over
an image, finds the local minima, and creates the output matrix from
these minimum values. If the neighborhood or structuring element has
a center element, the block places the minima there, as illustrated in
the following figure.

If the neighborhood or structuring element does not have an exact
center, the block has a bias toward the upper-left corner and places the
minima there, as illustrated in the following figure.

This block uses flat structuring elements only.

2-359

Erosion

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned
integer

No

Nhood Matrix or vector of 1s and
0s that represents the
neighborhood values

Boolean No

Output Vector or matrix of intensity
values that represents the
eroded image

Same as I port No

The output signal is the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to
specify how to enter your neighborhood or structuring element values.
If you select Specify via dialog, the Neighborhood or structuring
element parameter appears in the dialog box. If you select Input
port, the Nhood port appears on the block. Use this port to enter your
neighborhood values as a matrix or vector of 1s and 0s. You can only
specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define
the neighborhood or structuring element that the block applies to the
image. Specify a neighborhood by entering a matrix or vector of 1s and
0s. Specify a structuring element with the strel function from the
Image Processing Toolbox. If the structuring element is decomposable
into smaller elements, the block executes at higher speeds due to the

2-360

Erosion

use of a more efficient algorithm. If you enter an array of STREL
objects, the block applies each object to the entire matrix in turn.

Dialog
Box

The Erosion dialog box appears as shown in the following figure.

Neighborhood or structuring element source
Specify how to enter your neighborhood or structuring element
values. Select Specify via dialog to enter the values in the
dialog box. Select Input port to use the Nhood port to specify the
neighborhood values. You can only specify a structuring element
using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a
matrix or vector of 1s and 0s. If you are specifying a structuring
element, use the strel function from the Image Processing
Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify
via dialog.

2-361

Erosion

References [1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York:
Springer, 2003.

See Also Bottom-hat Video and Image Processing Blockset software

Closing Video and Image Processing Blockset software

Dilation Video and Image Processing Blockset software

Label Video and Image Processing Blockset software

Opening Video and Image Processing Blockset software

Top-hat Video and Image Processing Blockset software

imerode Image Processing Toolbox software

strel Image Processing Toolbox software

2-362

Estimate Geometric Transformation

Purpose Estimate geometric transformation from matching point pairs

Library Geometric Transformations

Description

Use the Estimate Geometric Transformation block to find the
transformation matrix which maps the greatest number of point pairs
between two images. A point pair refers to a point in the input image
and its related point on the image created using the transformation
matrix. You can select to use the RANdom SAmple Consensus
(RANSAC) or the Least Median Squares algorithm to exclude outliers
and to calculate the transformation matrix. You can also use all input
points to calculate the transformation matrix.

Port Input/Output Supported Data Types
Complex
Values
Supported

Pts1/Pts2 2xNMatrix, (where
N is the maximum
number of points)
coordinates of the
input points

• Double

• Single

• 8, 16, 32-bit signed integer

• 8, 16, 32-bit unsigned integer

No

Num Scalar value that
represents the
number of valid
points in Pts1 and
Pts 2

• 8, 16, 32-bit signed integer

• 8, 16, 32-bit unsigned integer

No

2-363

Estimate Geometric Transformation

Port Input/Output Supported Data Types
Complex
Values
Supported

TForm 2x3 or 3x3, the
transformation
matrix

• Double

• Single

No

Inlier 1xN, indicates
which points
have been used
to calculate TForm

Boolean No

Ports Pts1 and Pts2 are the points on two images that have the same
data type. When Pts 1 and Pts 2 are single or double, the output
transformation matrix will also have single or double data type. When
Pts1 and Pts2 images are built-in integers, the option is available to set
the transformation matrix data type to either Single or Double. The
TForm output provides the transformation matrix. The Inlier output
port provides the Inlier points on which the transformation matrix is
based. This output appears when you select the Output Boolean
signal indication which point pairs are inliers checkbox.

RANSAC and Least Median Squares Algorithms

The RANSAC algorithm relies on a distance threshold. A pair of

points, pi
a (image a, Pts1) and pi

b (image b, Pts 2) is an inlier only

when the distance between pi
b and the projection of pi

a based on the
transformation matrix falls within the specified threshold. The distance
metric used in the RANSAC algorithm is as follows:

d D p p H ti
b

i

Num

i
a=

=
∑ min((, :)),)

1
 ψ(

The Least Median Squares algorithm assumes at least 50% of the point
pairs can be mapped by a transformation matrix. The algorithm does
not need to explicitly specify the distance threshold. Instead, it uses the

2-364

Estimate Geometric Transformation

median distance between all input point pairs. The distance metric
used in the Least Median of Squares algorithm is as follows:

d median D p H D p H D pb a b a
Num
b

N
ap p p= ((, :)), (, :)),..., (,(((1 1 2 2ψ ψ ψ ::)))H

For both equations:

pi
a is a point in image a (Pts1)

pi
b is a point in image b (Pts2)

ψ(:)p Hi
a is the projection of a point on image a based on transformation

matrix H

D p pi
b

j
b(,) is the distance between two point pairs on image b

t is the threshold

Num is the number of points

The smaller the distance metric, the better the transformation matrix
and therefore the more accurate the projection image.

Transformations

The Estimate Geometric Transformation block supports
Nonreflective similarity, affine, and projective transformation
types, which are described in this section.

Nonreflective similarity transformation supports translation,
rotation, and isotropic scaling. It has four degrees of freedom and
requires two pairs of points.

2-365

Estimate Geometric Transformation

The transformation matrix is: H
h h h
h h h

=
−

⎡

⎣
⎢

⎤

⎦
⎥

1 2 3

2 1 4

The projection of a point x y T[] by H is: ˆ ˆx y H x yT T[] = []1

affine transformation supports nonisotropic scaling in addition to
all transformations that the nonreflective similarity transformation
supports. It has six degrees of freedom that can be determined from
three pairs of noncollinear points.

The transformation matrix is: H
h h h
h h h

=
⎡

⎣
⎢

⎤

⎦
⎥

1 2 3

4 5 6

The projection of a point x y T[] by H is: ˆ ˆx y H x yT T[] = []1

Projective transformation supports tilting in addition to all
transformations that the affine transformation supports.

The transformation matrix is : h
h h h
h h h
h h h

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 3

4 5 6

7 8 9
The projection of a point x y T[] by H is represented by homogeneous

coordinates as:
ˆ ˆ ˆu v w H x yT T[] = []1

2-366

Estimate Geometric Transformation

Distance Measurement

For computational simplicity and efficiency, this block uses algebraic

distance. The algebraic distance for a pair of points, x ya a T⎡
⎣

⎤
⎦ on

image a, and x yb b T⎡
⎣

⎤
⎦ on image b , according to transformation H, is

defined as follows;

For projective transformation:

D p p H u w x v w yi
b

i
a a a b a a b(, (:)) (() ())ψ = − + −2 2

1
2 , where

ˆ ˆ ˆu v w H x ya a a T a a T⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦1

For Nonreflective similarity or affine transformation:

D p p H x x y yi
b

i
a a b a b(, (:)) (() ())ψ = − + −2 2

1
2
,

where ˆ ˆx y H x ya a T a a T⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦1

Algorithm
The block performs a comparison and repeats it M number of times
between successive transformation matrices. If you select the Find
and exclude outliers option, the RANSAC and Least Median Squares
(LMS) algorithms become available. These algorithms calculate and
compare a distance metric. The transformation matrix that produces
the smaller distance metric becomes the new transformation matrix
that the next comparison uses. A final transformation matrix is
resolved when either:

• M number of random samplings is performed

• The RANSAC algorithm, when enough number of inlier point pairs
can be mapped, (dynamically updating M)

2-367

Estimate Geometric Transformation

The Estimate Geometric Transformation algorithm follows these steps:

1

A transformation matrix H is initialized to zeros

2

Set count = 0 (Randomly sampling).

3

While count < M , where M is total number of random samplings to
perform, perform the following;

a

Increment the count; count = count + 1.

b

Randomly select pair of points from images a and b, (2 pairs for
Nonreflective similarity, 3 pairs for affine, or 4 pairs for projective).

c

Calculate a transformation matrix H , from the selected points.

d

If H has a distance metric less than that of H , then replace H
with H .

(Optional for RANSAC algorithm only)

i.

Update M dynamically.

ii.

Exit out of sampling loop if enough number of point pairs can
be mapped by H .

4

2-368

Estimate Geometric Transformation

Use all point pairs in images a and b that can be mapped by H to
calculate a refined transformation matrix H

5

Iterative Refinement, (Optional for RANSAC and LMS algorithms)

a

Denote all point pairs that can be mapped by H as inliers.

b

Use inlier point pairs to calculate a transformation matrix H .

c

If H has a distance metric less than that of H , then replace H
with H , otherwise exit the loop.

Number of Random Samplings

The number of random samplings can be specified by the user for the
RANSAC and Least Median Squares algorithms. You can use an
additional option with the RANSAC algorithm, which calculates this
number based on an accuracy requirement. The Desired Confidence
level drives the accuracy.

The calculated number of random samplings,M used with the RANSAC
algorithm, is as follows:

M p
qs= −

−
log()
log()

1
1

where

• p is the probability of independent point pairs belonging to the
largest group that can be mapped by the same transformation. The
probability is dynamically calculated based on the number of inliers
found versus the total number of points. As the probability increases,
the number of samplings, M , decreases.

2-369

Estimate Geometric Transformation

• q is the probability of finding the largest group that can be mapped
by the same transformation.

• s is equal to the value 2, 3, or 4 for Nonreflective similarity, affine,
and projective transformation, respectively.

Iterative Refinement of Transformation Matrix

The transformation matrix calculated from all inliers can be used to
calculate a refined transformation matrix. The refined transformation
matrix is then used to find a new set of inliers. This procedure can be
repeated until the transformation matrix cannot be further improved.
This iterative refinement is optional.

2-370

Estimate Geometric Transformation

Dialog Box

Transformation Type
Specify transformation type, either Nonreflective similarity,
affine, or projective transformation. If you select projective
transformation, you can also specify a scalar algebraic distance

2-371

Estimate Geometric Transformation

threshold for determining inliers. If you select either affine
or projective transformation, you can specify the distance
threshold for determining inliers in pixels. See “Transformations”
on page 2-365 for a more detailed discussion.

Find and exclude outliers
When selected, the block finds and excludes outliers from the
input points and uses only the inlier points to calculate the
transformation matrix. When this option is not selected, all input
points are used to calculate the transformation matrix.

Method
Select either the RANdom SAmple Consensus (RANSAC) or the
Least Median of Squares algorithm to find outliers. See
“RANSAC and Least Median Squares Algorithms” on page 2-364
for a more detailed discussion.

Algebraic distance threshold for determining inliers
Specify a scalar threshold value for determining inliers. The
threshold controls the upper limit used to find the algebraic
distance in the RANSAC algorithm. This parameter appears when
the Method parameter is Random Sample Consensus (RANSAC)
and the Transformation type parameter is projective.

Distance threshold for determining inliers (in pixels)
Specify the upper limit distance a point can differ from the
projection location of its associating point. This parameter
appears when the Method parameter is set to Random Sample
Consensus (RANSAC) and the value of the Transformation
type parameter is set to Nonreflective similarity or affine

Determine number of random samplings using
Select Specified value to enter a positive integer value for
number of random samplings, or select Desired confidence
to set the number of random samplings as a percentage and a
maximum number. This parameter appears when you select Find
and exclude outliers parameter, and the value of theMethod
parameter is Random Sample Consensus (RANSAC).

2-372

Estimate Geometric Transformation

Number of random samplings
Specify the number of random samplings for the algorithm
to perform. This parameter appears when the value of the
Determine number of random samplings using parameter is
Specified value.

Desired confidence (in %)
Specify a percent by entering a number between 0 and 100. The
Desired confidence is the probability to find the largest group
of points that can be mapped by a transformation matrix. This
parameter is visible when the Determine number of random
samplings using is Desired confidence.

Maximum number of random samplings
Specify an integer number for the maximum number of random
samplings. This parameter appears when theMethod parameter
is set to Random Sample Consensus (RANSAC) and the value of
Determine number of random samplings using parameter is
Desired confidence.

Stop sampling earlier when a specified percentage of point
pairs are determined to be inlier

Specify to stop random sampling when a percentage of input
points have been found as inliers. This parameter appears when
theMethod parameter is Random Sample Consensus (RANSAC).

Perform additional iterative refinement of the transformation
matrix

Specify whether to perform refinement on the transformation
matrix. This parameter appears when you select Find and
exclude outliers parameter.

Output Boolean signal indicating which point pairs are inliers
Select this option to output the inlier point pairs that were used
to calculate the transformation matrix. This parameter appears
when you select Find and exclude outliers parameter. This
parameter is not used when the data type of points is signed or
double.

2-373

Estimate Geometric Transformation

When Pts1 and Pts2 are built-in integers, set transformation
matrix date type to

Specify transformation matrix data type as Single or Double
when the input points are built-in integers. This parameter is not
used when the data type of points is signed or double.

Parameter Name Default Value Visibility Tunability

Transformation type projective Always No

Find and exclude
outliers

Checked Always No

Method RANSAC Visible when Find
and exclude outliers
parameter is selected

No

Algebraic distance
threshold for
determining inliers

1.5 Visible when Method
parameter is Random
Sample Consensus
(RANSAC) and the
Transformatinon
type parameter is
projective

Yes

Distance threshold for
determining inliers (in
pixels)

1.5 Visible when Method
parameter is Random
Sample Consensus
(RANSAC) and the
Transformatinon
type parameter
is Nonreflective
similarity or affine

Yes

Determine number of
random samplings

Specified value Visible when Find and
exclude outliers
parameter is selected

No

2-374

Estimate Geometric Transformation

Parameter Name Default Value Visibility Tunability

Number of random
samplings

100 Visible when
Determine number
of random samplings
using parameter is
Specified value

Yes

Maximum number of
random samplings

200 Visible when the
Method parameter
is set to Random Sample
Consensus (RANSAC)
and Determine
number of random
samplings using
parameter is Desired
confidence

Yes

Desired confidence
(in%)

99 Visible when the
Determine number
of random samplings
using is Desired
confidence

Yes

Stop sampling earlier
when a specified
percentage of point
pairs are determined
to be inliers

Unchecked Visible when the
Method parameter
is Random Sample
Consensus (RANSAC)

No

Inlier percentage 75 Visible when Stop
sampling earlier
when a specified
percentage of point
pairs are determined
to be inliers parameter
is checked

Yes

2-375

Estimate Geometric Transformation

Parameter Name Default Value Visibility Tunability

Perform additional
iterative refinement
of the transformation
matrix

Unchecked Visible when Find
and exclude outliers
parameter is selected

No

Output Boolean signal
indicating which input
points are inliers

Unchecked Visible when Find
and exclude outliers
parameter is selected

No

When Pts1 and Pts2
are built-in integers,
set transformation
matrix data type to

Single Always No

Examples Calculate transformation matrix from largest group of point
pairs

Examples of input data and application of the Estimate Geometric
Transformation block appear in the following figures. Figures (a) and
(b) show the point pairs. The points are denoted by stars or circles, and
the numbers following them show how they are paired. Some point
pairs can be mapped by the same transformation matrix. Other point
pairs require a different transformation matrix. One matrix exists
that maps the largest number of point pairs, the block calculates and
returns this matrix. The block finds the point pairs in the largest group
and uses them to calculate the transformation matrix. The point pairs
connected by the magenta lines are the largest group.

The transformation matrix can then be used to stitch the images as
shown in Figure (e).

2-376

Estimate Geometric Transformation

2-377

Estimate Geometric Transformation

Video Mosaicking

To see an example of the Estimate Geometric Transformation block
used in a model with other blocks, see the Video Mosaicking Demo,
vipmosaicking.

References R. Hartley and A. Ziserman, “Multiple View Geometry in Computer
Vision,” Second edition, Cambridge University Press, 2003

See Also cp2tform Image Processing Toolbox software

vipmosaicking Video and Image Processing Blockset
demo

2-378

Find Local Maxima

Purpose Find local maxima in matrices

Library Statistics

Description The Find Local Maxima block finds the local maxima in the input
matrix. It does this by comparing the maximum value in the matrix
to a user-specified threshold. If the maximum value is greater than
or equal to this threshold, the block considers the value a valid local
maximum. Then, it sets all the matrix values in the neighborhood, an
area around and including the maximum value, to 0. This step ensures
that this maximum is not included in subsequent searches. The size of
the neighborhood must be appropriate for the data set. That is, it must
eliminate enough of the values around the maximum so that false peaks
are not discovered. The block repeats this entire process until either it
finds all the valid maxima or it finds the number of local maxima equal
to the Maximum number of local maxima (N) parameter value,
whichever comes first.

The block outputs the zero-based row and column coordinates of the
maxima at the Idx port and the number of valid local maxima found at
the Count port.

Port Input/Output Supported Data Types
Complex
Values
Supported

I/ Hough Matrix in which you
want to find the maxima

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

Th Scalar value that
represents the value
the maxima should meet
or exceed

Same as I/Hough port No

2-379

Find Local Maxima

Port Input/Output Supported Data Types
Complex
Values
Supported

Idx Vector or matrix
that represents the
zero-based coordinates
of the maxima. The
first row represents the
row coordinates and the
second row represents
the column coordinates.

• Double-precision floating point

• Single-precision floating point

• 8-, 16-, and 32-bit unsigned integer

No

Count Scalar value that
represents the number
of maxima that meet
or exceed the threshold
value

Same as Idx port No

The inputs to the I/Hough and Th ports must be the same data type.

Use the Maximum number of local maxima (N) parameter to
specify the maximum number of maxima to find.

Use the Neighborhood size parameter to specify the size of the
neighborhood around the maxima over which the block zeros out the
values. Enter a two-element vector of positive odd integers, [r c]. Here,
r is the number of rows in the neighborhood and c is the number of
columns.

Use the Source of threshold value parameter to specify how to enter
the threshold value. If you select Input port, the Th port appears on
the block. If you select Specify via dialog, the Threshold parameter
appears in the dialog box. Enter a scalar value that represents the
value all maxima should meet or exceed.

If the input to this block is a Hough matrix output from the Hough
Transform block, select the Input is Hough matrix spanning full
theta range check box. If you select this check box, the block assumes
that the Hough port input is antisymmetric about the rho axis and

2-380

Find Local Maxima

theta ranges from -pi/2 to pi/2 radians. If the block finds a local maxima
near the boundary such that the neighborhood lies outside the Hough
matrix, the block finds only one local maximum, and it ignores the
corresponding antisymmetric maximum.

Use the Index output data type parameter to specify the data type of
the Idx port output. Your choices are double, single, uint8, uint16,
or uint32.

Use the Count output data type parameter to specify the data type
of the Count port output. Your choices are double, single, uint8,
uint16, or uint32.

Examples

See “Finding Lines in Images” and “Measuring an Angle Between
Lines” in the Video and Image Processing Blockset User’s Guide.

2-381

Find Local Maxima

Dialog
Box

The Find Local Maxima dialog box appears as shown in the following
figure.

Maximum number of local maxima (N)
Specify the maximum number of maxima you want the block to
find.

2-382

Find Local Maxima

Neighborhood size
Specify the size of the neighborhood around the maxima over
which the block zeros out the values. Enter a two-element vector
of positive odd integers, [r c].

Source of threshold value
Specify how to enter the threshold value. If you select Input
port, the Th port appears on the block. If you select Specify via
dialog, the Threshold parameter appears in the dialog box.

Threshold
Enter a scalar value that represents the value all maxima should
meet or exceed. This parameter is visible if, for the Source of
threshold value parameter, you choose Specify via dialog.

Input is Hough matrix spanning full theta range
If you select this check box, the block assumes that the Hough
port input is antisymmetric about the rho axis and theta ranges
from -pi/2 to pi/2 radians.

Index output data type
Specify the data type of the Peaks port output. Your choices are
double, single, uint8, uint16, or uint32.

Count output data types
Specify the data type of the Count port output. Your choices are
double, single, uint8, uint16, or uint32.

See Also Hough Lines Video and Image Processing Blockset
software

Hough Transform Video and Image Processing Blockset
software

houghpeaks Image Processing Toolbox sofware

2-383

Frame Rate Display

Purpose Calculate average update rate of input signal

Library Sinks

Description The Frame Rate Display block calculates and displays the average
update rate of the input signal. This rate is in relation to the wall clock
time. For example, if the block displays 30, the model is updating the
input signal 30 times every second. You can use this block to check the
video frame rate of your simulation. During code generation, Real-Time
Workshop® does not generate code for this block.

Note This block supports intensity and color images on its port.

Port Input Supported Data Types
Complex
Values
Supported

Input M-by-N matrix of intensity
values or an M-by-N-by-P
color video signal where
P is the number of color
planes

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

Use the Calculate and display rate every parameter to control how
often the block updates the display. When this parameter is greater
than 1, the block displays the average update rate for the specified
number of video frames. For example, if you enter 10, the block
calculates the amount of time it takes for the model to pass 10 video
frames to the block. It divides this time by 10 and displays this average
video frame rate on the block.

2-384

Frame Rate Display

Note If you do not connect the Frame Rate Display block to a signal
line, the block displays the base (fastest) rate of the Simulink model.

Dialog
Box

The Frame Rate Display dialog box appears as shown in the following
figure.

Calculate and display rate every
Use this parameter to control how often the block updates the
display.

See Also To Multimedia File Signal Processing Blockset software

To Video Display Video and Image Processing Blockset
software

Video To Workspace Video and Image Processing Blockset
software

Video Viewer Video and Image Processing Blockset
software

2-385

From Multimedia File

Purpose Read video frames and audio samples from compressed multimedia file

Library Sources

Description The From Multimedia File block is a Signal Processing Blockset block.
For more information, see the From Multimedia File block reference
page in the Signal Processing Blockset software documentation.

2-386

Gamma Correction

Purpose Apply or remove gamma correction from images or video streams

Library Conversions

Description Use the Gamma Correction block to apply or remove gamma correction
from an image or video stream. For input signals normalized between 0
and 1, the block performs gamma correction as defined by the following
equations. For integers and fixed-point data types, these equations are
generalized by applying scaling and offset values specific to the data
type:

S

B
B B

LS

P

P P

=
− +

−

1

1 1

γ γ
γ()

F
S

B
S

LS

P

=
−

γ
γ()1 1

C F B S BO S P LS P= −
1

γ

′ =
≤

− >

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
I

S I I B

F I C I B

LS P

S O P

,

,
1

γ

SLS is the slope of the straight line segment. BP is the break point
of the straight line segment, which corresponds to the Break point
parameter. FS is the slope matching factor, which matches the slope of
the linear segment to the slope of the power function segment. CO is the
segment offset, which ensures that the linear segment and the power
function segments connect. Some of these parameters are illustrated
by the following diagram.

2-387

Gamma Correction

�G

�%�

0"0

For normalized input signals, the block removes gamma correction,
which linearizes the input video stream, as defined by the following
equation:

I

I
S I B

I C
F

I B

LS
P

O

S
P

=

′ ′ ≤

′ +⎛

⎝
⎜

⎞

⎠
⎟ ′ >

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

,

,
γ

Typical gamma values range from 1 to 3. Most monitor gamma values
range from 1.8 to 2.2. Check with the manufacturer of your hardware to
obtain the exact gamma value. Gamma function parameters for some
common standards are shown in the following table:

Standard Slope
Break
Point Gamma

CIE L* 9.033 0.008856 3

Recommendation ITU-R BT.709-3,
Parameter Values for the HDTV
Standards for Production and
International Programme
Exchange

4.5 0.018

20
9

sRGB 12.92 0.00304 2.4

2-388

Gamma Correction

Note This block supports intensity and color images on its ports.

The properties of the input and output ports are summarized in the
following table:

Port Input/Output Supported Data Types
Complex
Values
Supported

I M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

• Double-precision floating point

• Single-precision floating point

• Fixed point (up to 16-bit word
length)

• 8- and 16-bit signed integer

• 8- and 16-bit unsigned integer

No

I’ M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

Same as I port No

Use the Operation parameter to specify the block’s operation. If
you want to perform gamma correction, select Gamma. If you want to
linearize the input signal, select De-gamma.

If, for the Operation parameter, you select Gamma, use the Gamma
parameter to enter the desired gamma value of the output video stream.
This value must be greater than or equal to 1. If, for the Operation
parameter, you select De-gamma, use the Gamma parameter to enter
the gamma value of the input video stream.

Select the Linear segment check box if you want the gamma curve to
have a linear portion near black. If you select this check box, the Break
point parameter appears on the dialog box. Enter a scalar value that

2-389

Gamma Correction

indicates the I-axis value of the end of the linear segment. The break
point is shown in the first diagram of this block reference page.

Dialog
Box

The Gamma Correction dialog box appears as shown in the following
figure.

Operation
Specify the block’s operation. Your choices are Gamma or De-gamma.

Gamma
If, for the Operation parameter, you select Gamma, enter the
desired gamma value of the output video stream. This value must
be greater than or equal to 1. If, for the Operation parameter,
you select De-gamma, enter the gamma value of the input video
stream.

Linear segment
Select this check box if you want the gamma curve to have a
linear portion near the origin.

2-390

Gamma Correction

Break point
Enter a scalar value that indicates the I-axis value of the end of
the linear segment. This parameter is visible if you select the
Linear segment check box.

References [1] Poynton, Charles. Digital Video and HDTV Algorithms and
Interfaces. San Francisco, CA: Morgan Kaufman Publishers, 2003.

See Also Color Space Conversion Video and Image Processing Blockset
software

imadjust Image Processing Toolbox software

2-391

Gaussian Pyramid

Purpose Perform Gaussian pyramid decomposition

Library Transforms

viptransforms

Description The Gaussian Pyramid block computes Gaussian pyramid reduction or
expansion to resize an image. The image reduction process involves
lowpass filtering and downsampling the image pixels. The image
expansion process involves upsampling the image pixels and lowpass
filtering. You can also use this block to build a Laplacian pyramid. For
more information, see “Examples” on page 2-394.

Note This block supports intensity and color images on its ports.

Port Output Supported Data Types
Complex
Values
Supported

Input In Reduce mode, the input
can be an M-by-N matrix
of intensity values or an
M-by-N-by-P color video
signal where P is the
number of color planes.

In Expand mode, the input
can be a scalar, vector, or
M-by-N matrix of intensity
values or an M-by-N-by-P
color video signal where
P is the number of color
planes.

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

Output In Reduce mode, the
output can be a scalar,

Same as Input port No

2-392

Gaussian Pyramid

Port Output Supported Data Types
Complex
Values
Supported

vector, or matrix that
represents one level of a
Gaussian pyramid.

In Expand mode, the
output can be a matrix
that represents one level
of a Gaussian pyramid.

Use the Operation parameter to specify whether to reduce or expand
the input image. If you select Reduce, the block applies a lowpass filter
and then downsamples the input image. If you select Expand, the block
upsamples and then applies a lowpass filter to the input image.

Use the Pyramid level parameter to specify the number of times the
block upsamples or downsamples each dimension of the image by a
factor of 2. For example, suppose you have a 4-by-4 input image. You
set the Operation parameter to Reduce and the Pyramid level to
1. The block filters and downsamples the image and outputs a 2-by-2
pixel output image. If you have an M-by-N input image and you set the
Operation parameter to Reduce, you can calculate the dimensions of
the output image using the following equation:

ceil by ceil
M N
2 2

⎛
⎝⎜

⎞
⎠⎟

− − ⎛
⎝⎜

⎞
⎠⎟

You must repeat this calculation for each successive pyramid level. If
you have an M-by-N input image and you set the Operation parameter
to Expand, you can calculate the dimensions of the output image using
the following equation:

M Nl l−() +⎡
⎣

⎤
⎦ − − −() +⎡

⎣
⎤
⎦1 2 1 1 2 1by

2-393

Gaussian Pyramid

In the previous equation, l is the scalar value from 1 to inf that you
enter for the Pyramid level parameter.

Use the Coefficient source parameter to specify the coefficients of the
lowpass filter. If you select Default separable filter [1/4-a/2
1/4 a 1/4 1/4-a/2], use the a parameter to define the coefficients in
the vector of separable filter coefficients. If you select Specify via
dialog, use the Coefficient for separable filter parameter to enter a
vector of separable filter coefficients.

Examples

The following example model shows how to construct a Laplacian
pyramid:

1 Open this model by typing

doc_laplacian

at the MATLAB command prompt.

2-394

Gaussian Pyramid

2 Run the model to see the following results.

2-395

Gaussian Pyramid

2-396

Gaussian Pyramid

You can construct a Laplacian pyramid if the dimensions of the input

image, R-by-C, satisfy R MR
N= +2 1 and C Mc

N= +2 1 , where MR,
MC, and N are integers. In this example, you have an input matrix
that is 256-by-256. If you set MR and MC equal to 63 and N equal
to 2, you find that the input image needs to be 253-by-253. So you
use a Submatrix block to crop the dimensions of the input image to
253-by-253.

Fixed-Point Data Types

The following diagram shows the data types used in the Gaussian
Pyramid block for fixed-point signals:

You can set the coefficients table, product output, accumulator, and
output data types in the block mask.

2-397

Gaussian Pyramid

Dialog
Box

The Main pane of the Gaussian Pyramid dialog box appears as shown
in the following figure.

Operation
Specify whether you want to reduce or expand the input image.

2-398

Gaussian Pyramid

Pyramid level
Specify the number of times the block upsamples or downsamples
each dimension of the image by a factor of 2.

Coefficient source
Determine how to specify the coefficients of the lowpass filter.
Your choices are Default separable filter [1/4-a/2 1/4 a
1/4 1/4-a/2] or Specify via dialog.

a
Enter a scalar value that defines the coefficients in the default
separable filter [1/4-a/2 1/4 a 1/4 1/4-a/2]. This parameter
is visible if, for the Coefficient source parameter, you select
Default separable filter [1/4-a/2 1/4 a 1/4 1/4-a/2].

Coefficients for separable filter
Enter a vector of separable filter coefficients. This parameter
is visible if, for the Coefficient source parameter, you select
Specify via dialog.

The Data Types pane of the Gaussian Pyramid dialog box appears
as shown in the following figure.

2-399

Gaussian Pyramid

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

2-400

Gaussian Pyramid

Coefficients
Choose how to specify the word length and the fraction length
of the coefficients:

• When you select Same word length as input, the word length
of the coefficients match that of the input to the block. In this
mode, the fraction length of the coefficients is automatically
set to the binary-point only scaling that provides you with the
best precision possible given the value and word length of the
coefficients.

• When you select Specify word length, you can enter the word
length of the coefficients, in bits. The block automatically sets
the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the coefficients, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the coefficients. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Product output

)-",�4"�/2

������������#��
4��������������������#��

'������������������#��

As shown in the previous figure, the output of the multiplier is
placed into the product output data type and scaling. Use this
parameter to specify how to designate the product output word
and fraction lengths.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

2-401

Gaussian Pyramid

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Accumulator

As shown in the previous figure, inputs to the accumulator are
cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate the
accumulator word and fraction lengths.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

2-402

Gaussian Pyramid

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

See Also Resize Video and Image Processing Blockset
software

2-403

Histogram

Purpose Generate histogram of each input matrix

Library Statistics

Description The Histogram block is a Signal Processing Blockset block. For more
information, see the Histogram block reference page in the Signal
Processing Blockset software documentation.

2-404

Histogram Equalization

Purpose Enhance contrast of images using histogram equalization

Library Analysis & Enhancement

Description The Histogram Equalization block enhances the contrast of images by
transforming the values in an intensity image so that the histogram of
the output image approximately matches a specified histogram.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity values • Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

Hist Vector of integer values
that represents the
desired intensity values in
each bin

• Double-precision floating point

• Single-precision floating point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

Output Matrix of intensity values Same as I port No

If the data type of input to the I port is floating point, the input to Hist
port must be the same data type. The output signal has the same data
type as the input signal.

Use the Target histogram parameter to designate the histogram you
want the output image to have.

2-405

Histogram Equalization

If you select Uniform, the block transforms the input image so that the
histogram of the output image is approximately flat. Use the Number
of bins parameter to enter the number of equally spaced bins you want
the uniform histogram to have.

If you select User-defined, the Histogram source and Histogram
parameters appear on the dialog box. Use the Histogram source
parameter to select how to specify your histogram. If, for the
Histogram source parameter, you select Specify via dialog, you
can use the Histogram parameter to enter the desired histogram of
the output image. The histogram should be a vector of integer values
that represents the desired intensity values in each bin. The block
transforms the input image so that the histogram of the output image is
approximately the specified histogram.

If, for the Histogram source parameter, you select Input port, the
Hist port appears on the block. Use this port to specify your desired
histogram.

Note The vector input to the Hist port must be normalized such that
the sum of the values in all the bins is equal to the number of pixels
in the input image. The block does not error if the histogram is not
normalized.

Examples See “Adjusting the Contrast in Intensity Images” and“Adjusting the
Contrast in Color Images” in the Video and Image Processing Blockset
User’s Guide.

2-406

Histogram Equalization

Dialog
Box

The Histogram Equalization dialog box appears as shown in the
following figure.

Target histogram
Designate the histogram you want the output image to have.
If you select Uniform, the block transforms the input image so
that the histogram of the output image is approximately flat. If
you select User-defined, you can specify the histogram of your
output image.

Number of bins
Enter the number of equally spaced bins you want the uniform
histogram to have. This parameter is visible if, for the Target
histogram parameter, you select Uniform.

Histogram source
Select how to specify your histogram. Your choices are Specify
via dialog and Input port. This parameter is visible if, for the
Target histogram parameter, you select User-defined.

Histogram
Enter the desired histogram of the output image. This parameter
is visible if, for the Target histogram parameter, you select
User-defined.

2-407

Histogram Equalization

See Also imadjust Image Processing Toolbox

histeq Image Processing Toolbox

2-408

Hough Lines

Purpose Find Cartesian coordinates of lines described by rho and theta pairs

Library Transforms

Description

The Hough Lines block finds the points of intersection between the
reference image boundary lines and the line specified by a (rho, theta)
pair. The block outputs the zero-based row and column positions
of the intersections. The boundary lines indicate the left and right
vertical boundaries and the top and bottom horizontal boundaries of
the reference image.

If the line specified by the (rho, theta) pair does not intersect two border
lines in the reference image, the block outputs the values, [(-1,-1),
(-1, -1)]. This output intersection value allows the next block in your
model to ignore the points. Generally, the Hough Lines block precedes a
block that draws a point or shape at the intersection.

The following figure shows the input and output coordinates for the
Hough Lines block.

2-409

Hough Lines

*�+����
�����%�

r
c
r
c

r
c
r
c

11

11

12

12

21

21

22

22

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

rho
rho

or rho rho
1
2

1 2
⎡

⎣
⎢

⎤

⎦
⎥ []

theta
theta

or theta theta
1
2

1 2
⎡

⎣
⎢

⎤

⎦
⎥ []

Port Input/Output Supported Data Types
Complex
Values
Supported

Theta Vector of theta values that
represent input lines

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed, word length
less than or equal to 32)

• 8-, 16-, and 32-bit signed integer

No

Rho Vector of rho values that
represent input lines

Same as Theta port No

Ref I Matrix that represents a
binary or intensity image or
matrix that represents one
plane of an RGB image

• Double-precision floating point

• Single-precision floating point

• Fixed-point (signed and unsigned)

• Custom data types

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

2-410

Hough Lines

Port Input/Output Supported Data Types
Complex
Values
Supported

Pts 4-by-N matrix of intersection
values, where N is the
number of input lines

• 32-bit signed integer No

2-411

Hough Lines

Dialog
Box

The Main pane of the Hough Lines dialog box appears as shown in
the following figure.

Sine value computation method
If you select Trigonometric function, the block computes sine
and cosine values to calculate the intersections of the lines during

2-412

Hough Lines

the simulation. If you select Table lookup, the block computes
and stores the trigonometric values to calculate the intersections
of the lines before the simulation starts. In this case, the block
requires extra memory.

For floating-point inputs, set the Sine value computation
method parameter to Trigonometric function. For fixed-point
inputs, set the parameter to Table lookup.

Theta resolution (radians)
Use this parameter to specify the spacing of the theta-axis. This
parameter appears in the dialog box only if, for the Sine value
computation method parameter, you select Table lookup.
parameter appears in the dialog box.

The Data Types pane of the Hough Lines dialog box appears as shown
in the following figure.

2-413

Hough Lines

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

2-414

Hough Lines

Sine table
Choose how to specify the word length of the values of the sine
table. The fraction length of the sine table values always equals
the word length minus one:

When you select Specify word length, you can enter the word
length of the sine table.

The sine table values do not obey the Rounding mode and
Overflowmode parameters; they saturate and round to Nearest.

Product output
Use this parameter to specify how to designate this product
output word and fraction lengths:

When you select Same as first input, the characteristics match
the characteristics of the first input to the block.

When you select Binary point scaling, you can enter the word
length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. All
signals in the Video and Image Processing Blockset blocks have
a bias of 0.

See “Multiplication Data Types” for illustrations depicting the
use of the product output.

Accumulator
Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths.

When you select Same as product output the characteristics
match the characteristics of the product output.

When you select Binary point scaling, you can enter theWord
length and the Fraction length of the accumulator, in bits.

2-415

Hough Lines

When you select Slope and bias scaling, you can enter the
Word length, in bits, and the Slope of the Accumulator. All
signals in the Video and Image Processing Blockset software have
a bias of 0.

See “Multiplication Data Types” for illustrations depicting the use
of the accumulator data type in this block.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

Examples The following figure shows Line 1 intersecting the boundaries of the
reference image at [(r11, c11) (r12, c12)] and Line 2 intersecting
the boundaries at [(r21, c21) (r22, c22)]

*�����

*����"

,���#����-

,�""#��""-

,��"#���"-

,�"�#��"�-

����

������

���"

�����"

���������������

�
�	��.

See “Finding Lines in Images” and “Measuring an Angle Between
Lines” in the Video and Image Processing Blockset User Guide.

2-416

Hough Lines

See Also Find Local Maxima Video and Image Processing Blockset

Hough Transform Video and Image Processing Blockset

2-417

Hough Transform

Purpose Find lines in images

Library Transforms

viptransforms

Description Use the Hough Transform block to find lines in an image. The block
outputs the Hough space matrix and, optionally, the rho-axis and
theta-axis vectors. Peak values in the matrix represent potential lines
in the input image. Generally, the Hough Transform block precedes the
Hough Lines block which uses the output of this block to find lines in an
image. You can instead use a custom algorithm to locate peaks in the
Hough space matrix in order to identify potential lines.

Port Input/Output Supported Data Types
Supported
Complex
Values

BW Matrix that represents a
binary image

Boolean No

Hough Parameter space matrix • Double-precision floating point

• Single-precision floating point

• Fixed point (unsigned, fraction
length equal to 0)

• 8-, 16-, 32-bit unsigned integer

No

Theta Vector of theta values • Double-precision floating point

• Single-precision floating point

• Fixed point (signed)

• 8-, 16-, 32-bit signed integer

No

Rho Vector of rho values Same as Theta port No

2-418

Hough Transform

Dialog
Boxes

TheMain pane of the Hough Transform dialog box appears as shown in
the following figure.

Theta resolution (radians)
Specify the spacing of the Hough transform bins along the
theta-axis.

Rho resolution (pixels)
Specify the spacing of the Hough transform bins along the
rho-axis.

2-419

Hough Transform

Output theta and rho values
If you select this check box, the Theta and Rho ports appear on
the block. The block outputs theta and rho-axis vector values
at these ports.

Output data type
Specify the data type of your output signal.

The Data Types pane of the Hough Transform block dialog appears
as shown in the following figure. The Data Types pane will not show
fixed-point parameters when Output data type parameter is set to
double or single.

2-420

Hough Transform

2-421

Hough Transform

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Sine table
Choose how to specify the word length of the values of the sine
table:

• When you select Binary point scaling, you can enter the
word length of the sine table values, in bits.

• When you select Slope and bias scaling, you can enter the
word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and
Overflow mode parameters; they always saturate and round
to Nearest.

Rho
Choose how to specify the word length and the fraction length
of the rho values:

• When you select Binary point scaling, you can enter the
word length and the fraction length of the rho values, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the rho values. All signals
in Video and Image Processing Blockset blocks have a bias of 0.

Product output
. Use this parameter to specify how to designate the product
output word and fraction lengths:

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. All

2-422

Hough Transform

signals in Video and Image Processing Blockset blocks have a
bias of 0.

See “Multiplication Data Types” for illustrations depicting the
use of the product output.

Accumulator
Use this parameter to specify how to designate this accumulator
word and fraction lengths:

• When you select Same as product output, these
characteristics match the characteristics of the product output.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. All
signals in Video and Image Processing Blockset blocks have a
bias of 0.

See “Multiplication Data Types” for illustrations depicting the
use of the accumulator data type in this block.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

Hough output
Choose how to specify the word length and fraction length of the
Hough output of the block:

• When you select Binary point scaling, you can enter the
word length of the Hough output, in bits. The fraction length
always has a value of 0.

• When you select Slope and bias scaling, you can enter the
word length, in bits, of the Hough output. The slope always

2-423

Hough Transform

has a value of 0. All signals in Video and Image Processing
Blockset blocks have a bias of 0.

Theta output
Choose how to specify the word length and fraction length of the
theta output of the block:

• When you select Binary point scaling, you can enter the
word length and the fraction length of the theta output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the theta output. All
signals in Video and Image Processing Blockset blocks have a
bias of 0.

Algorithm The Hough Transform block implements the Standard Hough
Transform (SHT). The SHT uses the parametric representation of a line:

rho x theta y theta= +* cos() * sin()

The variable rho indicates the perpendicular distance from the origin
to the line.

The variable theta indicates the angle of inclination of the normal line

from the x-axis. The range of theta is
− ≤ < +




2 2 with a step-size
determined by the Theta resolution (radians) parameter. The SHT

2-424

Hough Transform

measures the angle of the line clockwise with respect to the positive
x-axis.

The Hough Transform block creates an accumulator matrix. The (rho,
theta) pair represent the location of a cell in the accumulator matrix.
Every valid (logical true) pixel of the input binary image represented
by (R,C) produces a rho value for all theta values. The block quantizes
the rho values to the nearest number in the rho vector. The rho vector
depends on the size of the input image and the user-specified rho
resolution. The block increments a counter (initially set to zero) in those
accumulator array cells represented by (rho, theta) pairs found for each
pixel. This process validates the point (R,C) to be on the line defined by
(rho, theta). The block repeats this process for each logical true pixel in
the image. The Hough block outputs the resulting accumulator matrix.

Examples See “Finding Lines in Images” and “Measuring an Angle Between
Lines” in the Video and Image Processing Blockset User Guide.

See Also Find Local Maxima Video and Image Processing Blockset

Hough Lines Video and Image Processing Blockset

hough Image Processing Toolbox

houghlines Image Processing Toolbox

houghpeaks Image Processing Toolbox

2-425

Image Complement

Purpose Compute complement of pixel values in binary, intensity, or RGB
images

Library Conversions

Description The Image Complement block computes the complement of a binary,
intensity, or RGB image. For binary images, the block replaces pixel
values equal to 0 with 1 and pixel values equal to 1 with 0. For an
intensity or RGB image, the block subtracts each pixel value from the
maximum value that can be represented by the input data type and
outputs the difference.

For example, suppose the input pixel values are given by x(i) and the
output pixel values are given by y(i). If the data type of the input is
double or single precision floating-point, the block outputs y(i) = 1.0-x(i).
If the input is an 8-bit unsigned integer, the block outputs y(i) = 255-x(i).

Port Input/Output Supported Data Types
Complex
Values
Supported

Input Vector or matrix of intensity values • Double-precision
floating point

• Single-precision
floating point

• Boolean

• 8-, 16-, 32-bit signed
integer

• 8-, 16-, 32-bit unsigned
integer

No

Output Complement of a binary, intensity, or
RGB image

Same as Input port No

The dimensions, data type, complexity, and frame status of the input
and output signals are the same.

2-426

Image Complement

Dialog
Box

The Image Complement dialog box appears as shown in the following
figure.

See Also Autothreshold Video and Image Processing Blockset
software

Chroma Resampling Video and Image Processing Blockset
software

Color Space Conversion Video and Image Processing Blockset
software

imcomplement Image Processing Toolbox software

2-427

Image Data Type Conversion

Purpose Convert and scale input image to specified output data type

Library Conversions

Description The Image Data Type Conversion block changes the data type of the
input to the user-specified data type and scales the values to the new
data type’s dynamic range. To convert between data types without
scaling, use the Simulink Data Type Conversion block.

When converting between floating-point data types, the block casts the
input into the output data type and clips values outside the range to
0 or 1. When converting to the Boolean data type, the block maps 0
values to 0 and all other values to one. When converting to or between
all other data types, the block casts the input into the output data type
and scales the data type values into the dynamic range of the output
data type. For double- and single-precision floating-point data types,
the dynamic range is between 0 and 1. For fixed-point data types, the
dynamic range is between the minimum and maximum values that can
be represented by the data type.

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Input M-by-N matrix of intensity
values or an M-by-N-by-P
color video signal where P is
the number of color planes

• Double-precision floating point

• Single-precision floating point

• Fixed point (word length less than
or equal to 16)

• Boolean

• 8-, 16-bit signed integer

• 8-, 16-bit unsigned integer

No

2-428

Image Data Type Conversion

Port Input/Output Supported Data Types
Complex
Values
Supported

Output M-by-N matrix of intensity
values or an M-by-N-by-P
color video signal where P is
the number of color planes

Same as Input port No

The dimensions, complexity, and frame status of the input and output
signals are the same.

Use the Output data type parameter to specify the data type of your
output signal values.

Dialog
Box

The Image Data Type Conversion dialog box appears as shown in the
following figure.

Output data type
Use this parameter to specify the data type of your output signal.

2-429

Image Data Type Conversion

Signed
Select this check box if you want the output fixed-point data to
be signed. This parameter is visible if, for the Output data type
parameter, you choose Fixed-point.

Word length
Use this parameter to specify the word length of your fixed-point
output. This parameter is visible if, for the Output data type
parameter, you choose Fixed-point.

Fraction length
Use this parameter to specify the fraction length of your
fixed-point output. This parameter is visible if, for the Output
data type parameter, you choose Fixed-point.

2-430

Image Data Type Conversion

See Also Autothreshold Video and Image Processing Blockset
software

2-431

Image From File

Purpose Import image from image file

Library Sources

Description Use the Image From File block to import an image from a supported
image file. For a list of supported file formats, see the imread function
reference page in the MATLAB documentation. If the image is a
M-by-N array, the block outputs a binary or intensity image, where M
and N are the number of rows and columns in the image. If the image is
a M-by-N-by-P array, the block outputs a color image, where M and N
are the number of rows and columns in each color plane, P.

Port Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity
values or an M-by-N-by-P
color video signal where P is
the number of color planes

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Yes

R, G,
B

Scalar, vector, or matrix that
represents one plane of the
input RGB video stream.
Outputs from the R, G,
or B ports have the same
dimensions.

Same as I port Yes

For the Video and Image Processing Blockset blocks to display video
data properly, double- and single-precision floating-point pixel values
must be between 0 and 1. If the input pixel values have a different data
type than the one you select using the Output data type parameter,

2-432

Image From File

the block scales the pixel values, adds an offset to the pixel values so
that they are within the dynamic range of their new data type, or both.

Use the File name parameter to specify the name of the graphics file
that contains the image to import into the Simulink modeling and
simulation software. If the file is not on the MATLAB path, use the
Browse button to locate the file. This parameter supports URL paths.

Use the Sample time parameter to set the sample period of the output
signal.

Use the Image signal parameter to specify how the block outputs a
color video signal. If you select One multidimensional signal, the
block outputs an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use
the spacer character, |, as the delimiter. This parameter is visible if
you set the Image signal parameter to Separate color signals.

On the Data Types pane, use the Output data type parameter to
specify the data type of your output signal.

2-433

Image From File

Dialog
Box

TheMain pane of the Image From File dialog box appears as shown in
the following figure.

File name
Specify the name of the graphics file that contains the image to
import into the Simulink environment.

Sample time
Enter the sample period of the output signal.

Image signal
Specify how the block outputs a color video signal. If you select One
multidimensional signal, the block outputs an M-by-N-by-P
color video signal, where P is the number of color planes, at one
port. If you select Separate color signals, additional ports
appear on the block. Each port outputs one M-by-N plane of an
RGB video stream.

2-434

Image From File

Output port labels
Enter the labels for your output ports using the spacer character,
|, as the delimiter. This parameter is visible if you set the Image
signal parameter to Separate color signals.

The Data Types pane of the Image From File dialog box appears as
shown in the following figure.

Output data type
Specify the data type of your output signal.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
will be unsigned. This parameter is only visible if, from the
Output data type list, you select Fixed-point.

2-435

Image From File

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible if, from the Output data
type list, you select Fixed-point.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

• Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

• Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is only visible if, from the Output data type list,
you select Fixed-point or when you select User-defined.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is
only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set
fraction length in output to parameter.

2-436

Image From File

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,
and ufrac functions from the Simulink Fixed Point library. This
parameter is only visible when you select User-defined for the
Output data type parameter.

See Also From Multimedia
File

Video and Image Processing Blockset software

Image From
Workspace

Video and Image Processing Blockset software

To Video Display Video and Image Processing Blockset software

Video From
Workspace

Video and Image Processing Blockset software

Video Viewer Video and Image Processing Blockset software

2-437

Image From File

im2double Image Processing Toolbox software

im2uint8 Image Processing Toolbox software

imread MATLAB

2-438

Image From Workspace

Purpose Import image from MATLAB workspace

Library Sources

Description Use the Image From Workspace block to import an image from the
MATLAB workspace. If the image is a M-by-N workspace array,
the block outputs a binary or intensity image, where M and N are
the number of rows and columns in the image. If the image is a
M-by-N-by-P workspace array, the block outputs a color image, where
M and N are the number of rows and columns in each color plane, P.

Port Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity
values or an M-by-N-by-P
color video signal where P is
the number of color planes

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

R, G,
B

Scalar, vector, or matrix
that represents one plane
of the RGB video stream.
Outputs from the R, G,
or B ports have the same
dimensions.

Same as I port No

For the Video and Image Processing Blockset blocks to display video
data properly, double- and single-precision floating-point pixel values
must be between 0 and 1. If the input pixel values have a different data
type than the one you select using the Output data type parameter,
the block scales the pixel values, adds an offset to the pixel values so
that they are within the dynamic range of their new data type, or both.

2-439

Image From Workspace

Use the Value parameter to specify the MATLAB workspace variable
that contains the image you want to import into Simulink environment.

Use the Sample time parameter to set the sample period of the output
signal.

Use the Image signal parameter to specify how the block outputs a
color video signal. If you select One multidimensional signal, the
block outputs an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use
the spacer character, |, as the delimiter. This parameter is visible if
you set the Image signal parameter to Separate color signals.

On the Data Types pane, use the Output data type parameter to
specify the data type of your output signal.

Dialog
Box

The Main pane of the Image From Workspace dialog box appears as
shown in the following figure.

2-440

Image From Workspace

Value
Specify the MATLAB workspace variable that you want to import
into Simulink environment.

Sample time
Enter the sample period of the output signal.

Image signal
Specify how the block outputs a color video signal. If you select One
multidimensional signal, the block outputs an M-by-N-by-P
color video signal, where P is the number of color planes, at one
port. If you select Separate color signals, additional ports
appear on the block. Each port outputs one M-by-N plane of an
RGB video stream.

Output port labels
Enter the labels for your output ports using the spacer character,
|, as the delimiter. This parameter is visible if you set the Image
signal parameter to Separate color signals.

The Data Types pane of the Image From Workspace dialog box appears
as shown in the following figure.

2-441

Image From Workspace

Output data type
Specify the data type of your output signal.

Signed
Select to output a signed fixed-point signal. Otherwise, the signal
is unsigned. This parameter is only visible if, from the Output
data type list, you select Fixed-point.

Word length
Specify the word length, in bits, of the fixed-point output data
type. This parameter is only visible if, from the Output data
type list, you select Fixed-point.

Set fraction length in output to
Specify the scaling of the fixed-point output by either of the
following two methods:

2-442

Image From Workspace

• Choose Best precision to have the output scaling
automatically set such that the output signal has the best
possible precision.

• Choose User-defined to specify the output scaling in the
Fraction length parameter.

This parameter is only visible if, from the Output data type list,
you select Fixed-point or when you select User-defined.

Fraction length
For fixed-point output data types, specify the number of fractional
bits, or bits to the right of the binary point. This parameter is
only visible when you select Fixed-point or User-defined for
the Output data type parameter and User-defined for the Set
fraction length in output to parameter.

User-defined data type
Specify any built-in or fixed-point data type. You can specify
fixed-point data types using the sfix, ufix, sint, uint, sfrac,

2-443

Image From Workspace

and ufrac functions from the Simulink Fixed Point library. This
parameter is only visible when you select User-defined for the
Output data type parameter.

See Also From Multimedia File Video and Image Processing Blockset
software

To Video Display Video and Image Processing Blockset
software

Video From Workspace Video and Image Processing Blockset
software

Video Viewer Video and Image Processing Blockset
software

im2double Image Processing Toolbox software

im2uint8 Image Processing Toolbox software

2-444

Image Pad

Purpose Pad signal along its rows, columns, or both

Library Utilities

Description The Image Pad block expands or crops the dimensions of a signal by
padding or truncating its rows, columns, or both.

Port Input/Output Supported Data Types Complex Values
Supported

Image /
I

M-by-N matrix of
intensity values or an
M-by-N-by-P color video
signal where P is the
number of color planes

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned
integer

Yes

PVal Scalar value that
represents the constant
pad value

Same as I port Yes

Output Padded scalar, vector, or
matrix

Same as I port Yes

The data type of the input signal is the data type of the output signal.

Use theMethod parameter to specify how you pad the input signal.

• Constant — Pad with a constant value

2-445

Image Pad

• Replicate— Pad by repeating its border values

• Symmetric — Pad with its mirror image

• Circular— Pad using a circular repetition of its elements

If you set the Method parameter to Constant, the Pad value source
parameter appears on the dialog box.

• Input port— The PVal port appears on the block. Use this port to
specify the constant value with which to pad your signal

• Specify via dialog — The Pad value parameter appears in the
dialog box. Enter the constant value with which to pad your signal.

Setting the Specify Parameter to Pad size

If you set the Specify parameter to Pad size, you can enter the size of
the padding in the horizontal and vertical directions.

The Pad rows at parameter controls the padding at the left, right
or both sides of the input signal.

• Left— The block adds additional columns on the left side.

• Right— The block adds additional columns on the right side.

• Both left and right— The block adds additional columns to the
left and right side.

• No padding— The block does not change the number of columns.

Use the Pad size along rows parameter to specify the size of the
padding in the horizontal direction. Enter a scalar value, and the block
adds this number of columns to the left, right, or both sides of your
input signal. If you set the Pad rows at parameter to Both left and
right, you can enter a two element vector. The left element controls
the number of columns the block adds to the left side of the signal; the
right element controls the number of columns the block adds to the
right side of the signal.

2-446

Image Pad

The Pad columns at parameter controls the padding at the top and
bottom of the input signal.

• Top — The block adds additional rows to the top.

• Bottom— The block adds additional rows to the bottom.

• Both top and bottom— The block adds additional rows to the top
and bottom.

• No padding— The block does not change the number of rows.

Use the Pad size along columns parameter to specify the size of the
padding in the vertical direction. Enter a scalar value, and the block
adds this number of rows to the top, bottom, or both of your input signal.
If you set the Pad columns at parameter to Both top and bottom,
you can enter a two element vector. The left element controls the
number of rows the block adds to the top of the signal; the right element
controls the number of rows the block adds to the bottom of the signal.

Setting the Specify Parameter to Output size

If, for the Specify parameter, you select Output size, you can enter
the total number of output columns and rows. This setting enables
you to pad or truncate the input signal. See the previous section for
descriptions of the Pad rows at and Pad columns at parameters. If
you are using the Image Pad block to truncate the input signal, these
parameters control where the signal is truncated.

If Pad rows at parameter is set to Both left and right, the block
splits the padding or truncation evenly. If an even split is not possible,
the block adds or removes elements from the end of the rows. The block
behaves similarly if the Pad columns at parameter is set to Both top
and bottom.

Use the Output row mode parameter to describe how to pad the input
signal.

• User-specified— Use the Row size parameter to specify the total
number of rows.

2-447

Image Pad

• Next power of two — The block pads the input signal along the
rows until the length of the rows is equal to a power of two. When
the length of the input signal’s rows is equal to a power of two, the
block does not pad the input signal’s rows.

Use the Output column mode parameter to describe how to pad the
input signal.

• User-specified— Use the Column size parameter to specify the
total number of columns.

• Next power of two — The block pads the input signal along the
columns until the length of the columns is equal to a power of two.
When the length of the input signal’s columns is equal to a power of
two, the block does not pad the input signal’s columns.

The following options are available for the Action when truncation
occurs parameter:

• None — Select this option when you do not want to be notified that
the input signal is truncated.

• Warning— Select this option when you want to receive a warning in
the MATLAB Command Window when the input signal is truncated.

• Error — Select this option when you want an error dialog box
displayed and the simulation terminated when the input signal is
truncated.

Examples The following four examples demonstrate the four different padding
methods:

• “Example 1” on page 2-449 — Demonstrates the block’s behavior
when the Method parameter is set to Constant.

• “Example 2” on page 2-450— Demonstrates the block’s behavior
when the Method parameter is set to Replicate.

2-448

Image Pad

• “Example 3” on page 2-451— Demonstrates the block’s behavior
when the Method parameter is set to Symmetric.

• “Example 4” on page 2-452— Demonstrates the block’s behavior
when the Method parameter is set to Circular.

Example 1

Suppose you want to pad the rows of your input signal with three initial
values equal to 0 and your input signal is defined as follows:

Set the Image Pad block parameters as follows:

• Method = Constant

• Pad value source = Specify via dialog

• Pad value = 0

• Specify = Output size

• Pad rows at = Left

• Output row mode = User-specified

• Row size = 6

• Pad columns at = No padding

The Image Pad block outputs the following signal:

2-449

Image Pad

Example 2

Suppose you want to pad your input signal with its border values, and
your input signal is defined as follows:

Set the Image Pad block parameters as follows:

• Method = Replicate

• Specify = Pad size

• Pad rows at = Both left and right

• Pad size along rows = 2

• Pad columns at = Both top and bottom

• Pad size along columns = [1 3]

The Image Pad block outputs the following signal:

2-450

Image Pad

The border values of the input signal are replicated on the top, bottom,
left, and right of the input signal so that the output is a 7-by-7 matrix.
The values in the corners of this output matrix are determined by
replicating the border values of the matrices on the top, bottom, left and
right side of the original input signal.

Example 3

Suppose you want to pad your input signal using its mirror image, and
your input signal is defined as follows:

Set the Image Pad block parameters as follows:

• Method = Symmetric

• Specify = Pad size

• Pad rows at = Both left and right

2-451

Image Pad

• Pad size along rows = [5 6]

• Pad columns at = Both top and bottom

• Pad size along columns = 2

The Image Pad block outputs the following signal:

The block flips the original input matrix and each matrix it creates
about their top, bottom, left, and right sides to populate the 7-by-13
output signal. For example, in the preceding figure, you can see how
the block flips the input matrix about its right side to create the matrix
directly to its right.

Example 4

Suppose you want to pad your input signal using a circular repetition of
its values. Your input signal is defined as follows:

2-452

Image Pad

Set the Image Pad block parameters as follows:

• Method = Circular

• Specify = Output size

• Pad rows at = Both left and right

• Output row mode = User-specified

• Row size = 9

• Pad columns at = Both top and bottom

• Output column mode = User-specified

• Column size = 9

The Image Pad block outputs the following signal:

The block repeats the values of the input signal in a circular pattern to
populate the 9-by-9 output matrix.

2-453

Image Pad

Dialog
Box

The Image Pad dialog box appears as shown in the following figure.

Method
Specify how you want the block to pad your signal.

2-454

Image Pad

Pad value source
If you select Input port, the PVal port appears on the block.
Use this port to specify the constant value with which to pad
your signal. If you select Specify via dialog, the Pad value
parameter becomes available. This parameter is visible if, for the
Method parameter, you select Constant.

Pad value
Enter the constant value with which to pad your signal. This
parameter is visible if, for the Pad value source parameter, you
select Specify via dialog. This parameter is tunable.

Specify
If you select Pad size, you can enter the size of the padding in
the horizontal and vertical directions. If you select Output size,
you can enter the total number of output columns and rows.

Pad rows at
Select Left to add additional columns to the left side of the signal.
Select Right to add additional columns to the right side of the
signal. Select Both left and right to add additional columns to
the left and right side of the signal. If you select No padding, the
block does not change the number of columns of the input signal.

Pad size along rows
This parameter controls how many columns are added to the
right and/or left side of your input signal. Enter a scalar value,
and the block adds this number of columns to the left, right, or
both sides of your signal. If, for the Pad rows at parameter
you selected Both left and right, enter a two-element vector.
The left element controls the number of columns the block adds
to the left side of the signal and the right element controls how
many columns the block adds to the right side of the signal. This
parameter is visible if, for the Specify parameter, you select
Pad size.

Output row mode
Describe how to pad the input signal. If you select
User-specified, the Row size parameter appears on the block

2-455

Image Pad

dialog box. If you select Next power of two, the block pads the
input signal along the rows until the length of the rows is equal
to a power of two. This parameter is visible if, for the Specify
parameter, you select Output size.

Row size
Enter a scalar value that represents the total number of output
columns. This parameter is visible if you set the Output row
mode parameter to User-specified.

Pad columns at
Select Top to add additional rows at the top of the input signal.
Select Bottom to add additional rows at the bottom of the signal.
Select Both top and bottom to add additional rows at the top
and bottom of the signal. If you select No padding, the block does
not change the number of rows of the input signal.

Pad size along columns
This parameter controls how many rows are added to the top,
bottom, or both of your input signal. Enter a scalar value and the
block adds this number of columns to the top, bottom, or both of
your signal. If, for the Pad columns at parameter you selected
Both top and bottom, enter a two-element vector. The left
element controls the number of rows the block adds to the top
of the signal and the right element controls how many rows the
block adds to the bottom of the signal. This parameter is visible if
you set the Specify parameter to Pad size.

Output column mode
Describe how to pad the input signal. If you select
User-specified, the Column size parameter appears on the
block dialog box. If you select Next power of two, the block pads
the input signal along the columns until the length of the columns
is equal to a power of two. This parameter is visible if, for the
Specify parameter, you select Output size.

2-456

Image Pad

Column size
Enter a scalar value that represents the total number of output
columns. This parameter is visible if you set the Output column
mode parameter to User-specified.

Action when truncation occurs
Choose None when you do not want to be notified that the input
signal is truncated. Select Warning to display a warning when
the input signal is truncated. Choose Error when you want an
error dialog box displayed and the simulation terminated when
the input signal is truncated.

2-457

Insert Text

Purpose Draw text on image or video stream.

Library Text & Graphics

Description The Insert Text block draws formatted text or numbers on an image or
video stream. The block uses the FreeType 2.3.5 library, an open-source
font engine, to produce stylized text bitmaps. To learn more about the
FreeType Project, visit http://www.freetype.org/. The Insert Text
block does not support character sets other than ASCII.

The Insert Text block lets you draw one or more instances of one or
more strings, including:

• A single instance of one text string

• Multiple instances of one text string

• Multiple instances of text, with a different text string at each location

Input/Output Description

Image M-by-N matrix of intensity values or an M-by-N-by-P color video
signal where P is the number of color planes.

R, G, B Matrix that represents one plane of the RGB video stream.
Outputs from the R, G, or B ports have the same dimensions
and data type.

Select Zero-based index value that indicates which text string to display.

Variables Vector or matrix whose values are used to replace ANSI C
printf-style format specifications.

Color Intensity input — Scalar value used for all strings or 1-by-N
vector of intensity values whose length is equal to the number
of strings.

Color input — Three-element vector that specifies one color for
all strings or a 3-by-N matrix of color values, where N is the
number of strings.

2-458

http://www.freetype.org/

Insert Text

Input/Output Description

Location 2-by-N matrix, where N is the number of text strings to insert,
that specifies the top-left corner of the text string bounding boxes.

Opacity Scalar value that is used for all strings or vector of opacity values
whose length is equal to the number of strings.

Use the Text parameter to specify the text string to be drawn on the
image or video frame. This parameter can be a single text string, such
as 'Figure1', a cell array of strings, such as {'Figure1','Figure2'},
or an ANSI C printf-style format specifications, such as %s.

If, for the Text parameter, you enter a cell array of strings, the Insert
Text block does not display all of the strings simultaneously. Instead,
the Select port appears on the block to let you indicate which text
string to display. The input to this port must be a scalar value, where
0 indicates the first string. If the input is less than 0 or greater than
one less than the number of strings in the cell array, the block does not
draw text on the image or video frame.

If, for the Text parameter, you enter ANSI C printf-style format
specifications, such as %d, %f, or %s, the Variables port appears
on the block. The block replaces the format specifications in the
Text parameter with each element of the input vector in turn. Use
the %s option to specify a set of text strings for the block to display
simultaneously at different locations. For example, using a Constant
block, enter [uint8('Text1') 0 uint8('Text2')] for the Constant
value parameter. The following table summarizes the supported
conversion specifications.

2-459

Insert Text

Text Parameter Supported Conversion Specifications

Supported
specifications

Support for
multiple instances
of the same
specification?

Support for mixed
specifications?

%d, %i, %u, %c, %f,
%o, %x, %X, %e, %E,
%g, and %G

Yes No

%s No No

Use the Location source parameter to indicate where to specify the
text location:

• Specify via dialog — the Location [row column] parameter
appears on the dialog box.

• Input port— the Location port appears on the block.

The following table describes how to format the location of the text
strings depending on the number of strings you specify to insert. You
can specify more than one location regardless of how many text strings
you specify, but the only way to get a different text string at each
location is to use the %s option for the Text parameter to specify a set
of text strings. You can enter negative values or values that exceed
the dimensions of the input image or video frame, but the text might
not be visible.

2-460

Insert Text

Location Parameter Text String Insertion

Parameter One Instance of
One Text String

Multiple Instances
of the Same Text
String

Multiple Instances
of Unique Text
Strings

Location [row
column] parameter
setting or the input
to the Location port

Two-element vector
of the form [row
column] that
indicates the top-left
corner of the text
bounding box.

2-by-N matrix,
where N is the
number of locations
at which to display
the text string. Each
column indicates
the row and column
coordinate of the
top-left corner of the
text bounding box
for the string, e.g.,
[[row1 column1]'
[row2 column2]']

2-by-N matrix,
where N is the
number of text
strings. Each
column indicates
the row and column
coordinate of the
top-left corner of the
text bounding box for
the corresponding
string, e.g., [[row1
column1]' [row2
column2]'].

Use the Color value source parameter to indicate where to specify
the text color:

• Specify via dialog— the Color value parameter appears on the
dialog box.

• Input port— the Color port appears on the block.

The following table describes how to format the color of the text strings
depending on the block input and the number of strings you want to
insert. If the input image is a floating-point data type, the color values
must be between 0 and 1. If the input image is an 8-bit unsigned integer
data type, the color values must range between 0 and 255.

2-461

Insert Text

Text String Color Values

Block Input One Text String Multiple Text
Strings

Intensity image Color value
parameter or the
input to the Color port
= Scalar intensity
value

Color value
parameter or the
input to the Color port
= Vector of intensity
values whose length
is equal to the number
of strings

Color image Color value
parameter or the
input to the Color
port = RGB triplet
that specifies the
color of the text

Color value
parameter or the
input to the Color
port = 3-by-N matrix
of color values, where
N is the number of
strings

Use the Opacity source parameter to indicate where to specify the
text’s opaqueness:

• Specify via dialog — the Opacity parameter appears on the
dialog box.

• Input port— the Opacity port appears on the block.

The following table describes how to format the opacity of the text
strings depending on the number of strings you want to insert.

2-462

Insert Text

Text String Opacity Values

Parameter One Text String Multiple Text
Strings

Opacity parameter
setting or the input to
the Opacity port

Scalar value between
0 and 1, where 0 is
translucent and 1 is
opaque

Vector whose length
is equal to the number
of strings

Use the Image signal parameter to specify how to input and output
a color video signal:

• One multidimensional signal— the block accepts an M-by-N-by-P
color video signal, where P is the number of color planes, at one port.

• Separate color signals — additional ports appear on the block.
Each port accepts one M-by-N plane of an RGB video stream.

Use the Font face parameter to specify the font of your text. The block
populates this list with the TrueType fonts installed on your system.
On Windows, the block searches the system registry for font files. On
UNIX, the block searches the X Server’s font path for font files.

Use the Font size (points) parameter to specify the font size.

If you select the Anti-aliased check box, the block smooths the edges
of the text, which can be computationally expensive. If you want your
model to run faster, clear this check box.

Row-Major Data Format

MATLAB and the Video and Image Processing Blockset blocks use
column-major data organization. However, the Insert Text block gives
you the option to process data that is stored in row-major format.
When you select the Input image is transposed (data order is row
major) check box, the block assumes that the input buffer contains
contiguous data elements from the first row first, then data elements
from the second row second, and so on through the last row. Use this
functionality only when you meet all the following criteria:

2-463

Insert Text

• You are developing algorithms to run on an embedded target that
uses the row-major format.

• You want to limit the additional processing required to take
the transpose of signals at the interfaces of the row-major and
column-major systems.

When you use the row-major functionality, you must consider the
following issues:

• When you select this check box, the first two signal dimensions of the
Insert Text block’s input are swapped.

• All Video and Image Processing Blockset software blocks can be used
to process data that is in the row-major format, but you need to know
the image dimensions when you develop your algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify
that your filter coefficients are transposed. If you are using the
Rotate block, you need to use negative rotation angles, etc.

• Only three blocks have the Input image is transposed (data
order is row major) check box. They are the Chroma Resampling,
Deinterlacing, and Insert Text blocks. You need to select this check
box to enable row-major functionality in these blocks. All other blocks
must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major
format to run on an embedded target.

2-464

Insert Text

��	��
��
���

����

���������

����

���������

����

���������

�����

������
!������
�����	������

�����"
����������
���#����������#���	
�����
������$�������������
���
��	������
��������������	
��
	���������$%��&���������

'�
�		�	
���������
���

����

��	��
����

����

'�
�		�	
�����������

����

See the DM642 EVM Video ADC and DM642 EVM Video DAC reference
pages in the Target Support Package User’s Guide for more information
about data order in embedded targets.

Examples See “Annotating AVI Files with Video Frame Numbers” and
“Annotating AVI Files at Two Separate Locations” in the Video and
Image Processing Blockset User’s Guide. Many of the Video and Image
Processing Blockset Demos make use of the Insert Text block.

2-465

Insert Text

Dialog
Box

The Main pane of the Insert Text dialog box appears as shown in the
following figure.

Text
Specify the text string to be drawn on the image or video stream.
This parameter can be a single text string or a cell array of strings.

2-466

Insert Text

To create a Select port enter a cell array of strings. To create a
Variables port, enter ANSI C printf-style format specifications,
such as %d, %f, or %s.

Color value source
Indicate where you want to specify the text color. Your choices are
Specify via dialog or Input port.

Color value
Specify the intensity or color of the text. This parameter is visible
if, for the Color source parameter, you select Specify via
dialog. Tunable.

Location source
Indicate where you want to specify the text location. Your choices
are Specify via dialog or Input port.

Location [row column]
Specify the text location. This parameter is visible if, for the
Location source parameter, you select Specify via dialog.
Tunable.

Opacity source
Indicate where you want to specify the text’s opaqueness. Your
choices are Specify via dialog or Input port.

Opacity
Specify the opacity of the text. This parameter is visible if, for the
Opacity source parameter, you select Specify via dialog.
Tunable.

Image signal
Specify how to input and output a color video signal. If you
select One multidimensional signal, the block accepts an
M-by-N-by-P color video signal, where P is the number of color
planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port accepts one
M-by-N plane of an RGB video stream.

2-467

Insert Text

Input image is transposed (data order is row major)
When you select this check box, the block assumes that the input
buffer contains data elements from the first row first, then data
elements from the second row second, and so on through the last
row.

The Font pane of the Insert Text dialog box appears as shown
in the following figure.

2-468

Insert Text

Font face
Specify the font of your text. The block populates this list with the
fonts installed on your system.

Font size (points)
Specify the font size.

2-469

Insert Text

Anti-aliased
Select this check box if you want the block to smooth the edges
of the text.

Supported
Data
Types

Port Supported Data Types

Input/Image• Double-precision floating point

• Single-precision floating point

• Fixed point(signed, word length less than or equal to 32.)

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

R, G, B Same as Input port

Select • Double-precision floating point. (This data type is only
supported if the input to the I or R, G, and B ports is a
floating-point data type.)

• Single-precision floating point. (This data type is only
supported if the input to the I or R, G, and B ports is a
floating-point data type.)

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

2-470

Insert Text

Port Supported Data Types

Variables The data types supported by this port depend on the
conversion specification you are using in the Text
parameter.

%d, %i, and %u:

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

%c and %s:

• 8-bit unsigned integer

%f:

• Double-precision floating point

• Single-precision floating point

%o, %x, %X, %e, %E, %g, and %G:

• Double-precision floating point

• Single-precision floating point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Color Same as Input port (The input to this port must be the
same data type as the input to the Input port.)

2-471

Insert Text

Port Supported Data Types

Location • Double-precision floating point. (This data type is only
supported if the input to the I or R, G, and B ports is a
floating-point data type.)

• Single-precision floating point. (This data type is only
supported if the input to the I or R, G, and B ports is a
floating-point data type.)

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Opacity • Double-precision floating point. (This data type is only
supported if the input to the Input or R, G, and B ports
is a double-precision floating-point data type.)

• Single-precision floating point. (This data type is only
supported if the input to the I or R, G, and B ports is a
single-precision floating-point data type.)

• ufix8_En7 (This data type is only supported if the input
to the I or R, G, and B ports is a fixed-point data type.)

See Also Draw Shapes Video and Image Processing Blockset
software

2-472

Kalman Filter

Purpose Predict or estimate states of dynamic systems

Library Filtering

Description The Kalman Filter block is a Signal Processing Blockset block. For
more information, see the Kalman Filter block reference page in the
Signal Processing Blockset software documentation.

2-473

Label

Purpose Label connected components in binary images

Library Morphological Operations

Description The Label block labels the objects in a binary image, BW, where the
background is represented by pixels equal to 0 (black) and objects are
represented by pixels equal to 1 (white). At the Label port, the block
outputs a label matrix that is the same size as the input matrix. In the
label matrix, pixels equal to 0 represent the background, pixels equal
to 1 represent the first object, pixels equal to 2 represent the second
object, and so on. At the Count port, the block outputs a scalar value
that represents the number of labeled objects.

Port Input/Output Supported Data Types
Complex
Values
Supported

BW Vector or matrix that
represents a binary image

Boolean No

Label Label matrix • 8-, 16-, and 32-bit unsigned
integer

No

Count Scalar that represents the
number of labeled objects

Same as Label port No

Use the Connectivity parameter to define which pixels are connected
to each other. If you want a pixel to be connected to the other pixels
located on the top, bottom, left, and right, select 4. If you want a pixel
to be connected to the other pixels on the top, bottom, left, right, and
diagonally, select 8.

Consider the following 3-by-3 image. If, for the Connectivity
parameter, you select 4, the block considers the white pixels marked
by black circles to be connected.

2-474

Label

If, for the Connectivity parameter, you select 8, the block considers
the white pixels marked by black circles to be connected.

Use the Output parameter to determine the block’s output. If you
select Label matrix and number of labels, ports Label and Count
appear on the block. The block outputs the label matrix at the Label
port and the number of labeled objects at the Count port. If you select
Label matrix, the Label port appears on the block. If you select Number
of labels, the Count port appears on the block.

Use the Output data type parameter to set the data type of the
outputs at the Label and Count ports. If you select Automatic, the
block calculates the maximum number of objects that can fit inside the
image based on the image size and the connectivity you specified. Based
on this calculation, it determines the minimum output data type size
that guarantees unique region labels and sets the output data type
appropriately. If you select uint32, uint16, or uint8, the data type of
the output is 32-, 16-, or 8-bit unsigned integers, respectively. If you
select uint16, or uint8, the If label exceeds data type size, mark
remaining regions using parameter appears in the dialog box. If the
number of found objects exceeds the maximum number that can be
represented by the output data type, use this parameter to specify the

2-475

Label

block’s behavior. If you select Maximum value of the output data
type, the remaining regions are labeled with the maximum value of
the output data type. If you select Zero, the remaining regions are
labeled with zeroes.

Dialog
Box

The Label dialog box appears as shown in the following figure.

Connectivity
Specify which pixels are connected to each other. If you want a
pixel to be connected to the pixels on the top, bottom, left, and
right, select 4. If you want a pixel to be connected to the pixels on
the top, bottom, left, right, and diagonally, select 8.

Output
Determine the block’s output. If you select Label matrix and
number of labels, the Label and Count ports appear on the
block. The block outputs the label matrix at the Label port and
the number of labeled objects at the Count port. If you select

2-476

Label

Label matrix, the Label port appears on the block. If you select
Number of labels, the Count port appears on the block.

Output data type
Set the data type of the outputs at the Label and Count ports.
If you select Automatic, the block determines the appropriate
data type for the output. If you select uint32, uint16, or uint8,
the data type of the output is 32-, 16-, or 8-bit unsigned integers,
respectively.

If label exceeds data type size, mark remaining regions using
Use this parameter to specify the block’s behavior if the number
of found objects exceeds the maximum number that can be
represented by the output data type. If you select Maximum
value of the output data type, the remaining regions are
labeled with the maximum value of the output data type. If you
select Zero, the remaining regions are labeled with zeroes. This
parameter is visible if, for the Output data type parameter, you
choose uint16 or uint8.

See Also Bottom-hat Video and Image Processing Blockset
software

Closing Video and Image Processing Blockset
software

Dilation Video and Image Processing Blockset
software

Erosion Video and Image Processing Blockset
software

Opening Video and Image Processing Blockset
software

Top-hat Video and Image Processing Blockset
software

2-477

Label

bwlabel Image Processing Toolbox software

bwlabeln Image Processing Toolbox software

2-478

Maximum

Purpose Find maximum values in input or sequence of inputs

Library Statistics

Description The Maximum block is a Signal Processing Blockset block. For more
information, see the Maximum block reference page in the Signal
Processing Blockset software documentation.

2-479

Mean

Purpose Find mean value of each input matrix

Library Statistics

Description The Mean block is a Signal Processing Blockset block. For more
information, see the Mean block reference page in the Signal Processing
Blockset software documentation.

2-480

Median

Purpose Find median value of each input matrix

Library Statistics

Description The Median block is a Signal Processing Blockset block. For more
information, see the Median block reference page in the Signal
Processing Blockset software documentation.

2-481

Median Filter

Purpose Perform 2-D median filtering

Library Filtering / Analysis & Enhancement

vipfilter

Description The Median Filter block replaces the central value of an M-by-N
neighborhood with its median value. If the neighborhood has a center
element, the block places the median value there, as illustrated in the
following figure.

The block has a bias toward the upper-left corner when the
neighborhood does not have an exact center. See the median value
placement in the following figure.

The block pads the edge of the input image, which sometimes causes the
pixels within [M/2 N/2] of the edges to appear distorted. The median
value is less sensitive than the mean to extreme values. As a result, the
Median Filter block can remove salt-and-pepper noise from an image
without significantly reducing the sharpness of the image.

2-482

Median Filter

Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity values • Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

Val Scalar value that represents
the constant pad value

Same as I port No

Output Matrix of intensity values Same as I port No

If the data type of the input signal is floating point, the output has
the same data type. The data types of the signals input to the I and
Val ports must be the same.

Fixed-Point Data Types

The information in this section is applicable only when the dimensions
of the neighborhood are even.

For fixed-point inputs, you can specify accumulator and output data
types as discussed in “Dialog Box” on page 2-485. Not all these
fixed-point parameters apply to all types of fixed-point inputs. The
following table shows the output and accumulator data type used for
each fixed-point input.

Fixed-Point Input Output Data Type Accumulator Data Type

Even M X X

Odd M X

2-483

Median Filter

Fixed-Point Input Output Data Type Accumulator Data Type

Odd M and complex X X

Even M and complex X X

When M is even, fixed-point signals use the accumulator and output data
types. The accumulator data type store the result of the sum performed
while calculating the average of the two central rows of the input
matrix. The output data type stores the total result of the average.

Complex fixed-point inputs use the accumulator parameters. The
calculation for the sum of the squares of the real and imaginary parts of
the input occur, before sorting input elements. The accumulator data
type stores the result of the sum of the squares.

2-484

Median Filter

Dialog
Box

The Main pane of the Median Filter dialog box appears as shown in
the following figure.

Neighborhood size
Specify the size of the neighborhood over which the block
computes the median.

2-485

Median Filter

• Enter a scalar value that represents the number of rows and
columns in a square matrix.

• Enter a vector that represents the number of rows and columns
in a rectangular matrix.

Output size
This parameter controls the size of the output matrix.

• If you choose Same as input port I, the output has the same
dimensions as the input to port I. The Padding options
parameter appears in the dialog box. Use the Padding
options parameter to specify how to pad the boundary of your
input matrix.

• If you select Valid, the block only computes the median where
the neighborhood fits entirely within the input image, with
no need for padding. The dimensions of the output image are,
output rows = input rows - neighborhood rows + 1,
and
output columns = input columns - neighborhood
columns + 1.

Padding options
Specify how to pad the boundary of your input matrix.

• Select Constant to pad your matrix with a constant value. The
Pad value source parameter appears in the dialog box

• Select Replicate to pad your input matrix by repeating its
border values.

• Select Symmetric to pad your input matrix with its mirror
image.

• Select Circular to pad your input matrix using a circular
repetition of its elements. This parameter appears if, for the
Output size parameter, you select Same as input port I.

For more information on padding, see the Image Pad block
reference page.

2-486

Median Filter

Pad value source
Use this parameter to specify how to define your constant
boundary value.

• Select Specify via dialog to enter your value in the block
parameters dialog box. The Pad value parameter appears
in the dialog box.

• Select Input port to specify your constant value using the
Val port. This parameter appears if, for the Padding options
parameter, you select Constant.

Pad value
Enter the constant value with which to pad your matrix. This
parameter appears if, for the Pad value source parameter, you
select Specify via dialog. Tunable.

The Data Types pane of the Median Filter dialog box appears as
follows. The parameters on this dialog box becomes visible only when
the dimensions of the neighborhood are even.

2-487

Median Filter

Rounding mode
Select the rounding mode for fixed-point operations.

2-488

Median Filter

Overflow mode
Select the overflow mode for fixed-point operations.

Note Only certain cases require the use of the accumulator and
output parameters. Refer to “Fixed-Point Data Types” on page
2-483 for more information.

Accumulator
Use this parameter to specify the accumulator word and fraction
lengths resulting from a complex-complex multiplication in the
block:

• When you select Same as input, these characteristics match
the related input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. This
block requires power-of-two slope and a bias of 0.

Output
Choose how to specify the output word length and fraction length:

• When you select Same as input, these characteristics match
the related input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. This block
requires power-of-two slope and a bias of 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more

2-489

Median Filter

information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] Gonzales, Rafael C. and Richard E. Woods. Digital Image
Processing. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.

See Also 2-D Convolution Video and Image Processing Blockset

2-D FIR Filter Video and Image Processing Blockset

medfilt2 Image Processing Toolbox

2-490

Minimum

Purpose Find minimum values in input or sequence of inputs

Library Statistics

Description The Minimum block is a Signal Processing Blockset block. For more
information, see the Minimum block reference page in the Signal
Processing Blockset software documentation.

2-491

Opening

Purpose Perform morphological opening on binary or intensity images

Library Morphological Operations

Description The Opening block performs an erosion operation followed by a dilation
operation using a predefined neighborhood or structuring element. This
block uses flat structuring elements only.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned
integer

No

Nhood Matrix or vector of ones and
zeros that represents the
neighborhood values

Boolean No

Output Scalar, vector, or matrix
of intensity values that
represents the opened
image

Same as I port No

The output signal has the same data type as the input to the I port.

Use the Neighborhood or structuring element source parameter to
specify how to enter your neighborhood or structuring element values.
If you select Specify via dialog, the Neighborhood or structuring

2-492

Opening

element parameter appears in the dialog box. If you select Input
port, the Nhood port appears on the block. Use this port to enter your
neighborhood values as a matrix or vector of 1s and 0s. You can only
specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to
define the region the block moves throughout the image. Specify a
neighborhood by entering a matrix or vector of 1s and 0s. Specify a
structuring element with the strel function from the Image Processing
Toolbox. If the structuring element is decomposable into smaller
elements, the block executes at higher speeds due to the use of a more
efficient algorithm.

Dialog
Box

The Opening dialog box appears as shown in the following figure.

Neighborhood or structuring element source
Specify how to enter your neighborhood or structuring element
values. Select Specify via dialog to enter the values in the
dialog box. Select Input port to use the Nhood port to specify the

2-493

Opening

neighborhood values. You can only specify a structuring element
using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a
matrix or vector of 1s and 0s. If you are specifying a structuring
element, use the strel function from the Image Processing
Toolbox. This parameter is visible if, for the Neighborhood or
structuring element source parameter, you select Specify
via dialog.

References [1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York:
Springer, 2003.

See Also Bottom-hat Video and Image Processing Blockset software

Closing Video and Image Processing Blockset software

Dilation Video and Image Processing Blockset software

Erosion Video and Image Processing Blockset software

Label Video and Image Processing Blockset software

Top-hat Video and Image Processing Blockset software

imopen Image Processing Toolbox software

strel Image Processing Toolbox software

2-494

Optical Flow

Purpose Estimate object velocities

Library Analysis & Enhancement

vipanalysis

Description

The Optical Flow block estimates the direction and speed of object
motion from one image to another or from one video frame to another
using either the Horn-Schunck or the Lucas-Kanade method.

Port Output Supported Data Types
Complex
Values
Supported

I/I1 Scalar, vector, or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point (supported when
the Method parameter is set to
Lucas-Kanade)

No

I2 Scalar, vector, or matrix of
intensity values

Same as I port No

|V|^2 Matrix of velocity
magnitudes

Same as I port No

V Matrix of velocity
components in complex
form

Same as I port Yes

2-495

Optical Flow

To compute the optical flow between two images, you must solve the
following optical flow constraint equation:

I u I v Ix y t+ + = 0

In this equation, the following values are represented:

• Ix , Iy and It are the spatiotemporal image brightness derivatives

• u is the horizontal optical flow

• v is the vertical optical flow

Because this equation is underconstrained, there are several methods
to solve for u and v:

• Horn-Schunck Method

• Lucas-Kanade Method

See the following two sections for descriptions of these methods

Horn-Schunck Method

By assuming that the optical flow is smooth over the entire image,
the Horn-Schunck method computes an estimate of the velocity field,

[]u v T , that minimizes this equation:

E I u I v I dxdy
u
x

u
y

v
xx y t= + + + ∂

∂
⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

⎛

⎝
⎜

⎞

⎠
⎟ + ∂

∂
⎛
⎝⎜

⎞
⎠⎟∫∫ ()2

2 2 2
α ++ ∂

∂
⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫∫ v

y
dxdy

2

In this equation,
∂
∂
u
x and

∂
∂
u
y are the spatial derivatives of the optical

velocity component u, and α scales the global smoothness term. The
Horn-Schunck method minimizes the previous equation to obtain the
velocity field, [u v], for each pixel in the image, which is given by the
following equations:

2-496

Optical Flow

u u
I I u I v I

I I

v v

x y
k

x y
k x x

k
x y y

k
x y t

x y

x y
k

x y

, ,
, ,

, ,

[]+

+

= −
+ +

+ +

=

1
2 2 2

1

α

kk y x
k
x y y

k
x y t

x y

I I u I v I

I I
−

+ +

+ +

[], ,

α2 2 2

In this equation, u vx y
k

x y
k

, ,⎡
⎣

⎤
⎦ is the velocity estimate for the pixel at

(x,y), and u vx y
k

x y
k

, ,
⎡
⎣⎢

⎤
⎦⎥ is the neighborhood average of u vx y

k
x y
k

, ,⎡
⎣

⎤
⎦ .

For k=0, the initial velocity is 0.

If you set theMethod parameter to Horn-Schunck, the block solves for
u and v as follows:

1 Compute Ix and Iy using the Sobel convolution kernel:

− − −[]1 2 1 0 0 0 1 2 1; ; , and its transposed form for each
pixel in the first image.

2 Compute It between images 1 and 2 using the −[]1 1 kernel.

3 Assume the previous velocity to be 0, and compute the average

velocity for each pixel using 0 1 0 1 0 1 0 1 0; ;[] as a
convolution kernel.

4 Iteratively solve for u and v.

Use the Compute optical flow between parameter to specify whether
to compute the optical flow between two images or two video frames.
If you select Current frame and N-th frame back, the N parameter
appears in the dialog box. Enter a scalar value that represents the
number of frames between the reference frame and the current frame.

Use the Velocity output parameter to specify the block’s output. If you
select Magnitude-squared, the block outputs the optical flow matrix

2-497

Optical Flow

where each element is of the form u v2 2+ . If you select Horizontal and
vertical components in complex form, the block outputs the optical

flow matrix where each element is of the form u jv+ . The horizontal
velocity component represents the real part of each value and the
vertical velocity component represents the imaginary part of each value.

The smoothness factor, α , is a positive constant. If the relative motion
between the two images or video frames is large, enter a large positive
scalar value for the Smoothness factor. If the relative motion is small,
enter a small positive scalar value. You must experiment to find the
smoothness factor that best suits your application.

The Optical Flow block uses an iterative process to calculate the optical
flow between two images or two video frames. Use the Stop iterative
solution parameter to control when the iterative process stops. If you
want it to stop when the velocity difference is below a certain threshold
value, select When velocity difference falls below threshold.
Then, use the Velocity difference threshold parameter to specify a
threshold value. If you want the iterative process to stop after a certain
number of iterations, choose When maximum number of iterations is
reached. Then use the Maximum number of iterations parameter
to specify the maximum number of iterations you want the block to
perform. If you select Whichever comes first, you must enter values
for both the Velocity difference threshold andMaximum number
of iterations parameters.

The block stops iterating as soon as one of these conditions is satisfied.

Lucas-Kanade Method

To solve the optical flow constraint equation for u and v, the
Lucas-Kanade method divides the original image into smaller sections
and assumes a constant velocity in each section. Then, it performs a
weighted least-square fit of the optical flow constraint equation to

a constant model for u v T[] in each section, Ω , by minimizing the
following equation:

2-498

Optical Flow

W I u I v Ix y t
x

2 2[]+ +
∈
∑

Ω

Here, W is a window function that emphasizes the constraints at the
center of each section. The solution to the minimization problem is
given by the following equation:

W I W I I

W I I W I

u
v

W I I

W I I

x x y

y x y

x t

y t

2 2 2

2 2 2

2

2
∑ ∑

∑ ∑
∑
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

If you set theMethod parameter to Lucas-Kanade, the block computes

It using a difference filter or a derivative of a Gaussian filter.

The two following sections explain how Ix , Iy , It , and then u and v
are computed.

Difference Filter
If you set the Temporal gradient filter parameter to Difference
filter [-1 1], the block solves for u and v as follows:

1 Compute Ix and Iy using the kernel − −[]1 8 0 8 1 12/ and its
transposed form.

If you are working with fixed-point data types, the kernel values are
signed fixed-point values with word length equal to 16 and fraction
length equal to 15.

2 Compute It between images 1 and 2 using the −[]1 1 kernel.

3 Smooth the gradient components, Ix , Iy , and It , using a separable
and isotropic 5-by-5 element kernel whose effective 1-D coefficients

are 1 4 6 4 1 16[] / . If you are working with fixed-point data
types, the kernel values are unsigned fixed-point values with word
length equal to 8 and fraction length equal to 7.

2-499

Optical Flow

4 Solve the 2-by-2 linear equations for each pixel using the following
method:

• If A
a b
b c

W I W I I

W I I W I

x x y

y x y

=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑ ∑
∑ ∑

2 2 2

2 2 2

Then the eigenvalues of A are λi
a c b a c

i= + ± + − =
2

4
2

1 2
2 2()

; ,

In the fixed-point diagrams, P
a c

Q
b a c= + = + −

2
4

2

2 2
,

()

• When the block finds the eigenvalues, it compares them to the
threshold, τ , that corresponds to the value you enter for the
Threshold for noise reduction parameter. The results fall into
one of the following cases:

Case 1: λ τ1 ≥ and λ τ2 ≥

A is nonsingular, so the block solves the system of equations using
Cramer’s rule.

Case 2: λ τ1 ≥ and λ τ2 <

A is singular (noninvertible), so the block normalizes the gradient
flow to calculate u and v.

Case 3: λ τ1 < and λ τ2 <

The optical flow, u and v, is 0.

The Compute optical flow between, N, and Velocity output
parameters are described in “Horn-Schunck Method” on page 2-496.

Use the Threshold for noise reduction parameter to eliminate the
effect of small movements between frames. The higher the number, the
less small movements impact the optical flow calculation. Experiment
with this parameter to find the value that best suits your application.

2-500

Optical Flow

Derivative of Gaussian
If you set the Temporal gradient filter parameter to Derivative of
Gaussian, the block solves for u and v using the following steps. You
can see the flow chart for this process at the end of this section:

1 Compute Ix and Iy using the following steps:

a Use a Gaussian filter to perform temporal filtering. Specify the
temporal filter characteristics such as the standard deviation and
number of filter coefficients using the Number of frames to
buffer for temporal smoothing parameter.

b Use a Gaussian filter and the derivative of a Gaussian filter to
smooth the image using spatial filtering. Specify the standard
deviation and length of the image smoothing filter using the
Standard deviation for image smoothing filter parameter.

2 Compute It between images 1 and 2 using the following steps:

a Use the derivative of a Gaussian filter to perform temporal
filtering. Specify the temporal filter characteristics such as
the standard deviation and number of filter coefficients using
the Number of frames to buffer for temporal smoothing
parameter.

b Use the filter described in step 1b to perform spatial filtering on
the output of the temporal filter.

3 Smooth the gradient components, Ix , Iy , and It , using a gradient
smoothing filter. Use the Standard deviation for gradient
smoothing filter parameter to specify the standard deviation and
the number of filter coefficients for the gradient smoothing filter.

4 Solve the 2-by-2 linear equations for each pixel using the following
method:

2-501

Optical Flow

• If A
a b
b c

W I W I I

W I I W I

x x y

y x y

=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑ ∑
∑ ∑

2 2 2

2 2 2

Then the eigenvalues of A are λi
a c b a c

i= + ± + − =
2

4
2

1 2
2 2()

; ,

• When the block finds the eigenvalues, it compares them to the
threshold, τ , that corresponds to the value you enter for the
Threshold for noise reduction parameter. The results fall into
one of the following cases:

Case 1: λ τ1 ≥ and λ τ2 ≥

A is nonsingular, so the block solves the system of equations using
Cramer’s rule.

Case 2: λ τ1 ≥ and λ τ2 <

A is singular (noninvertible), so the block normalizes the gradient
flow to calculate u and v.

Case 3: λ τ1 < and λ τ2 <

The optical flow, u and v, is 0.

Select the Discard normal flow estimates when constraint
equation is ill-conditioned check box if you want the block to set
the motion vector to zero when the optical flow constraint equation
is ill-conditioned. The block calculates these motion vectors on a
pixel-by-pixel basis.

Select the Output image corresponding to motion vectors
(accounts for block delay) check box if you want the block to output
the image that corresponds to the motion vector being output by the
block.

The Velocity output parameter is described in “Horn-Schunck
Method” on page 2-496.

2-502

Optical Flow

Use the Threshold for noise reduction parameter to eliminate the
effect of small movements between frames. The higher the number, the
less small movements impact the optical flow calculation. Experiment
with this parameter to find the value that best suits your application.

������)�!���������������/�
������������
�/��	�����)�!�������������������0���������������/�
������������

������)�!���������������/�
������������
�/��	�����)�!�������������������0���������������/�
������������

Fixed-Point Data Type Diagram

The following diagrams shows the data types used in the Optical Flow
block for fixed-point signals. The block supports fixed-point data types
only when the Method parameter is set to Lucas-Kanade.

2-503

Optical Flow

1����
	�����.��

/��	����
	�����.��

/��	����
	�����.��

���
�
�����
	�����.��

��������	
	�����.�� 2
��
�

	�����.��

0�����.���	�����������2����������$�
����3�������������������

14#�1.#�1� 145"#
1.5"#
141.#
141�#
1.1�

,65"-145"#
,65"-1.5"#
,65"-141.#
,65"-141�#
,65"-1.1�

'�������
��
7�����
�������

2
��
����
������������
������
���������

0�����.���	������������������������������

0�����.���	�����������������
��������������

���
�
�����
	�����.��

8�����
	�����.��

9��	
��
�
��
�
	�����.��

�������
������������		�������������
����������
�
������	�����.���

���
�
�����
	�����.��

���
�
�����
	�����.��

/��	����
	�����.��

�������
������������		�������������
����������
�
������	�����.���

���
�
�����
	�����.��

1����
	�����.��

���
�
�����
	�����.��

8�����
	�����.��

9��	
��
�
��
�
	�����.��

�������
������������		�������������
����������
�
������	�����.���

���
�
�����
	�����.��

���
�
�����
	�����.��

�������
������������		�������������
����������
�
������	�����.���

���
�
�����
	�����.��

/��	����
	�����.��

42(.-','(+�("-,�(+ 0)((,?�+*
0("�/
"�+/�2
/1-�,�(+0

>�+.
)(,�(+
�/',(20

)-",�4"�/2 '�0, �../2 '�0,
�../2�5
0-%,2�',(2

'�0,

)-",�4"�/2 '�0, �../2
'�0, �../2�5

0-%,2�',(2

2-504

Optical Flow

0�����.���	��������������	
������������

/��	����
	�����.��

/��	����
	�����.��

���
�
�����
	�����.��

9��	
��
�
��
�
	�����.�� /��	����

	�����.��'�0,

'�0,

)-",�4"�/2 '�0,

2-505

Optical Flow

0�����.���	�������������������
��

�������
������������		�������������
����������
�
������	�����.���

���
�
�����
	�����.��

���
�
�����
	�����.��

���
�
�����
	�����.��

��������	
	�����.��

���
�
�����
	�����.��

9��	
��
�
��
�
	�����.��

���
�
�����
	�����.��

���
�
�����
	�����.��

����������������:
��������������
�����������
��
,���������;��������*
���%8���	��7����	�������������������������
���:
������-

0�����.���	�����������9

�������
������������		�������������
����������
�
������	�����.���

���
�
�����
	�����.��

0�����.���	�����������;
5"

1��<"

9��	
����
��
�
	�����.�� ���
�
�����

	�����.��

���
�
�����
	�����.��

0�����.���	�����������,�%�-5"

���
�
�����
	�����.��

���
�
�����
	�����.��

���
�
�����
	�����.�� ���
�
�����

	�����.��

�������
������������		�������������
����������
�
������	�����.��� 9��	
��

�
��
�
	�����.��

0�����.���	�����������=

���
�
�����
	�����.��

���
�
�����
	�����.��

�������
������������		�������������
����������
�
������	�����.���

���
�
�����
	�����.��

���
�
�����
	�����.��

'�0,

)-",�4"�/2 '�0,

�../2�5
0-%,2�',(2

)-",�4"�/2

�../2 2�*?,�0?�>,

'�0,

)-",�4"�/2 '�0,�../2

�../2 01-�2/�2((, 2�*?,�0?�>,

2-506

Optical Flow

0�����.���	��������������	��������������������������������

9��	
��
�
��
�
	�����.��

�������
������������		�������������
����������
�
������	�����.���

���
�
�����
	�����.��

���
�
�����
	�����.��

���
�
�����
	�����.��

���
�
�����
	�����.��

���
�
�����
	�����.��

9��	
��
�
��
�
	�����.��

���
�
�����
	�����.��

���
�
�����
	�����.��

2
��
�
	�����.��

���
�
�����
	�����.��

'�0,'�0,

)-",�4"�/2 '�0, �../2 .���./2)-",�4"�/2

�../2

You can set the product output, accumulator, gradients, threshold, and
output data types in the block mask.

2-507

Optical Flow

Dialog
Box

The Main pane of the Optical Flow dialog box appears as shown in
the following figure.

Method
Select the method the block uses to calculate the optical flow.
Your choices are Horn-Schunck or Lucas-Kanade.

Compute optical flow between
Select Two images to compute the optical flow between two
images. Select Current frame and N-th frame back to compute
the optical flow between two video frames that are N frames apart.

2-508

Optical Flow

This parameter is visible if you set the Method parameter to
Horn-Schunck or you set theMethod parameter to Lucas-Kanade
and the Temporal gradient filter to Difference filter [-1
1].

N
Enter a scalar value that represents the number of frames
between the reference frame and the current frame. This
parameter becomes available if you set the Compute optical
flow between parameter, you select Current frame and N-th
frame back.

Smoothness factor
If the relative motion between the two images or video frames is
large, enter a large positive scalar value. If the relative motion is
small, enter a small positive scalar value. This parameter becomes
available if you set theMethod parameter to Horn-Schunck.

Stop iterative solution
Use this parameter to control when the block’s iterative solution
process stops. If you want it to stop when the velocity difference
is below a certain threshold value, select When velocity
difference falls below threshold. If you want it to stop after
a certain number of iterations, choose When maximum number of
iterations is reached. You can also select Whichever comes
first. This parameter becomes available if you set theMethod
parameter to Horn-Schunck.

Maximum number of iterations
Enter a scalar value that represents the maximum number of
iterations you want the block to perform. This parameter is
only visible if, for the Stop iterative solution parameter, you
select When maximum number of iterations is reached or
Whichever comes first. This parameter becomes available if
you set the Method parameter to Horn-Schunck.

Velocity difference threshold
Enter a scalar threshold value. This parameter is only visible
if, for the Stop iterative solution parameter, you select When

2-509

Optical Flow

velocity difference falls below threshold or Whichever
comes first. This parameter becomes available if you set the
Method parameter to Horn-Schunck.

Velocity output
If you select Magnitude-squared, the block outputs the optical

flow matrix where each element is of the form u v2 2+ . If you
select Horizontal and vertical components in complex
form, the block outputs the optical flow matrix where each

element is of the form u jv+ .

Temporal gradient filter
Specify whether the block solves for u and v using a difference
filter or a derivative of a Gaussian filter. This parameter becomes
available if you set theMethod parameter to Lucas-Kanade.

Number of frames to buffer for temporal smoothing
Use this parameter to specify the temporal filter characteristics
such as the standard deviation and number of filter coefficients.
This parameter becomes available if you set the Temporal
gradient filter parameter to Derivative of Gaussian.

Standard deviation for image smoothing filter
Specify the standard deviation for the image smoothing filter.
This parameter becomes available if you set the Temporal
gradient filter parameter to Derivative of Gaussian.

Standard deviation for gradient smoothing filter
Specify the standard deviation for the gradient smoothing filter.
This parameter becomes available if you set the Temporal
gradient filter parameter to Derivative of Gaussian.

Discard normal flow estimates when constraint equation is
ill-conditioned

Select this check box if you want the block to set the motion vector
to zero when the optical flow constraint equation is ill-conditioned.
This parameter becomes available if you set the Temporal
gradient filter parameter to Derivative of Gaussian.

2-510

Optical Flow

Output image corresponding to motion vectors (accounts for
block delay)

Select this check box if you want the block to output the image
that corresponds to the motion vector being output by the block.
This parameter becomes available if you set the Temporal
gradient filter parameter to Derivative of Gaussian.

Threshold for noise reduction
Enter a scalar value that determines the motion threshold
between each image or video frame. The higher the number, the
less small movements impact the optical flow calculation. This
parameter becomes available if you set the Method parameter
to Lucas-Kanade.

The Data Types pane of the Optical Flow dialog box appears as shown
in the following figure. The parameters on this dialog box becomes
visible only when the Lucas-Kanade method is selected.

2-511

Optical Flow

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

2-512

Optical Flow

Product output
Use this parameter to specify how to designate the product output
word and fraction lengths.

)-",�4"�/2

���
�
�����
	�����.�� 9��	
��

	�����.��

���
�
�����
���������
	�����.��

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output in
bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Accumulator
Use this parameter to specify how to designate this accumulator
word and fraction lengths.

���
�
�����
	�����.��

���
�
�����
	�����.��

�������
������������		�������������
����������
�
������	�����.���

1��
������		���%
1����#����	����#
������	
����
��
�
	�����.��

�../2'�0,

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator in bits.

2-513

Optical Flow

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Gradients
Choose how to specify the word length and fraction length of the
gradients data type:

• When you select Same as accumulator, these characteristics
match those of the accumulator.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the quotient, in bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the quotient. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

Threshold
Choose how to specify the word length and fraction length of the
threshold data type:

• When you select Same word length as first input, the
threshold word length matches that of the first input.

• When you select Specify word length, enter the word length
of the threshold data type.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the threshold, in bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the threshold. The bias of
all signals in the Video and Image Processing Blockset blocks
is 0.

2-514

Optical Flow

Output
Choose how to specify the word length and fraction length of the
output data type:

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] Barron, J.L., D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt.
Performance of optical flow techniques. CVPR, 1992.

See Also Block Matching Video and Image Processing Blockset software

Gaussian Pyramid Video and Image Processing Blockset software

2-515

Projective Transformation

Purpose Transform quadrilateral into another quadrilateral

Library Geometric Transformations

vipgeotforms

Description

The Projective Transformation block transforms rectangles into
quadrilaterals, quadrilaterals into rectangles, and quadrilaterals into
other quadrilaterals.

Port Output Supported Data Types
Complex
Values
Supported

Input /
Output

M-by-N matrix of
intensity values or
an M-by-N-by-P color
video signal where P
is the number of color
planes

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

R, G, B
(input and
output)

Scalar, vector, or matrix
that represents one
plane of the RGB video
stream. Outputs from
the R, G, or B ports have
the same dimensions
and data type.

Same as I port No

2-516

Projective Transformation

Port Output Supported Data Types
Complex
Values
Supported

InPts Eight-element vector,
[r1 c1 r2 c2 ... r4 c4],
of scalar values that
represents the row and
column coordinates of
the four corners of the
input quadrilateral

• Double-precision floating point.
(This data type is only supported
if the input to the I or R, G, and
B ports is a floating-point data
type.)

• Single-precision floating point.
(This data type is only supported
if the input to the I or R, G, and
B ports is a floating-point data
type.)

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

The block rounds the values input at
this port and converts them to 32-bit
signed integers.

No

OutPts Eight-element vector,
[r1 c1 r2 c2 ... r4 c4],
of scalar values that
represents the row and
column coordinates of
the four corners of the
output quadrilateral

Same as InPts port No

InROI Four-element vector, [r
c height width], that
defines the row and
column coordinates of
the top-left corner of a
rectangular ROI as well
as its height and width

Same as InPts port No

2-517

Projective Transformation

Port Output Supported Data Types
Complex
Values
Supported

OutSize Four-element vector, [r
c height width], that
represents the row and
column coordinates of
the upper-left corner of
the rectangular output
image as well as its
height and width

Same as InPts port No

Valid Boolean value that
indicates whether or
not three quadrilateral
vertices are collinear

Boolean No

InPtsValid Boolean value that
indicates whether
or not three input
quadrilateral vertices
are collinear

Boolean No

OutPtsValid Boolean value that
indicates whether
or not three output
quadrilateral vertices
are collinear

Boolean No

Use the Image signal parameter to specify how to input and output
a color video signal. If you select One multidimensional signal, the
block accepts an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port accepts one M-by-N
plane of an RGB video stream.

The following sections summarize the behavior of the Projective
Transformation block in its three modes.

2-518

Projective Transformation

Rectangle to Quadrilateral Mode

Use the Inverse mapping method parameter to specify the algorithm
the block uses to implement the projective transformation. If you choose
Exact solution, the block divides the output shape using vertical scan
lines. For each pixel location on a scan line, it uses an inverse projection
transformation matrix to find the corresponding pixel location in the
input image. When this pixel location is not located directly on a
pixel in the input image, the block uses 2-D interpolation to calculate
the pixel value. Then it assigns this pixel value to the corresponding
location in the output image.

If you choose Quadratic approximation, the block divides the input
shape using subdivision lines and the output shape using vertical
scan lines. For the first pixel location on a scan line, the block uses
an inverse projection transformation matrix to find the corresponding
pixel location in the input image. If this pixel location is not located
directly on a pixel in the input image, the block uses 2-D interpolation
to calculate the pixel value. Then it assigns this pixel value to the
corresponding location in the output image. The block calculates the
remaining pixel locations using x and y offsets that it computes from
the inverse projection transformation matrix. Then it repeats the
interpolation process to find all the pixel values in the output image.

The following figures summarize two operations of the Projective
Transformation block.

2-519

Projective Transformation

2������
�

1�����
�����

0�9�� ������"���
1��
��#��������6��

�������
�0����"���

-����� ��������H���������������������
������������������
�
�������-����������
������������������

����
� �
��

�����������
� �
�����
��������������
����������
�������
�

0�9�� ������"���
1��
��#��������6��

I,:����9�� ������
�����������
#������$:��
�:���� ����������������:������������
����������1����������������������;

2������
�

1�����
�����

0�9�� ������"���
1��
��#��������6��

�������
�0����"���

-����� ��������H���������������������
������������������
�
�������

-����������
������������������
����
� �
��

�����������
� �
�����
��������������
����������
3�����
�����

0�9�� ������"���
1��
��#��������6��

2-520

Projective Transformation

Use the Quality factor (number of subdivisions) parameter to
specify the number of pairs of horizontal and vertical lines (subdivision
lines) the block uses to subdivide the output shape. Enter a scalar
integer value that is greater than or equal to 0 and less than or equal
to the height or width of the input image, whichever is smaller. The
larger the quality factor, the closer the approximate solution is to the
exact solution. Experiment with this parameter to find the value that
best suits your application.

Use the Background fill value(s) parameter to specify the background
of the output image. If the block outputs an intensity image, enter a
scalar value. If the block outputs an RGB image, enter a scalar value
that the block uses as each of the R, G, and B values or a three-element
vector that specifies an RGB triplet.

Use the Interpolation method parameter to specify which 2-D
interpolation method the block uses to calculate the pixel values in the
output image. If you select Nearest neighbor, the block uses the value
of the nearest pixel for the new pixel intensity. If you select Bilinear,
the new pixel value is the weighted average of the four nearest pixel
intensities. If you select Bicubic, the new pixel value is the weighted
average of the 16 nearest pixel intensities.

Input image parameters — Use the Rectangular ROI parameter
to define the portion of the input image that the block transforms into
a quadrilateral. Your choices are Full image or User-defined. If
you select User-defined, the Rectangular ROI source parameter
appears in the dialog box. Use this parameter to specify whether you
want to define the ROI using the block dialog box or an input port.
If you select Specify via dialog, use the ROI [r,c,height,width]
parameter to enter the row and column coordinates of the upper-left
corner of the ROI as well as its height and width. If you select Input
port, the If ROI is invalid parameter appears in the dialog box. Use
it to specify the block’s behavior if the four-element vector input to the
InROI port contains values that are outside the input image. Your
choices are Clip, Clip and warn, or Error. If you select Clip, the
block changes the row, column, height, or width values so the ROI fits
entirely within the input image.

2-521

Projective Transformation

Output image parameters — Use the Quadrilateral vertices
source parameter to specify how to define the quadrilateral vertices.
If you select Specify via dialog, the Quadrilateral vertices
[r1,c1,...,r4,c4] and Size parameters appear in the dialog box. For
the Quadrilateral vertices [r1,c1,...,r4,c4] parameter, enter an
eight-element vector of values that represents the row and column
coordinates of the four corners of the quadrilateral. Use the Size
parameter to specify the size of the output image. If you select Full,
the output image size is determined by the values you enter for the
Quadrilateral vertices [r1,c1,...,r4,c4] parameter. That is, the block
output is big enough so you see the entire output quadrilateral. If you
select User-defined, use the Location and size [r,c,height,width]
parameter to define the row and column coordinates of the upper-left
corner of the output image as well as its height and width. If, for the
Quadrilateral vertices source parameter, you select Input port,
the OutPts port appears on the block. The input to this port must be an
eight-element vector of scalar values that represent the row and column
coordinates of the four corners of the output quadrilateral. Use the
Location and size [r,c,height,width] parameter to define the row
and column coordinates as well as the height and width of the block’s
output image, which can differ from the size of the output quadrilateral.

If you select the Output validity of quadrilateral vertices (three
points cannot be collinear) check box, the Valid port appears on the
block. If the quadrilateral vertices are not collinear, the block outputs
1 at this port. Otherwise it outputs 0, and the block does not compute
an output image.

Quadrilateral to Rectangle Mode

The Inverse mapping method, Quality factor (number of
subdivisions), Background fill value(s), and Interpolation
method parameters are described in “Rectangle to Quadrilateral Mode”
on page 2-519.

Input image parameters — Use the Quadrilateral vertices
source parameter to specify how to define the input quadrilateral
vertices. If you select Specify via dialog, the Quadrilateral
vertices [r1,c1,...,r4,c4] parameter appears in the dialog box. Enter

2-522

Projective Transformation

an eight-element vector of values that represent the row and column
coordinates of the four corners of the quadrilateral. If you select Input
port, the InPts port appears on the block. The input to this port must
be an eight-element vector of scalar values that represent the row and
column coordinates of the four corners of the input quadrilateral. Use
the If vertices are outside input image parameter to specify the
block’s behavior if the input to the InPts port contains vertices outside
the input image. Your choices are Clip, Clip and warn, or Error. If
you select Clip, the block changes the row or column values of the
vertices so that the quadrilateral fits entirely within the input image.
If you select the Output validity of quadrilateral vertices (three
points cannot be collinear) check box, the Valid port appears on the
block. If the quadrilateral vertices are not collinear, the block outputs
1 at this port. Otherwise it outputs 0, and the block does not compute
an output image.

Output image parameters — Use the Rectangle size source
parameter to specify how to define the output rectangle size. If you
select Specify via dialog, the Rectangle location and size
[r,c,height,width] and Size parameters appear in the dialog box. For
the Rectangle location and size [r,c,height,width] parameter,
enter scalar values that represent the row and column coordinates as
well as the height and width of the output rectangle. Use the Size
parameter to specify the size of the block’s output image, which can
differ from the size of the output rectangle. If you select Full, the block
output size is determined by the values you enter for the Rectangle
location and size [r,c,height,width] parameter. That is, the block
output is big enough so you see the entire output rectangle. If you
select User-defined, use the Location and size [r,c,height,width]
parameter to define the row and column coordinates as well as the
height and width of the output image. If, for the Rectangle size
source parameter, you select Input port, the OutSize port appears
on the block. The input to this port must be a four-element vector of
scalar values that represent the row and column coordinates of the
upper-left corner of the output rectangle as well as its height and width.
Use the Location and size [r,c,height,width] parameter to define

2-523

Projective Transformation

the row and column coordinates as well as the height and width of the
block’s output image.

Note If you set the Inverse mapping method parameter to
Quadratic approximation and the Quality factor (number
of subdivisions) parameter to a value greater than 0, the
subquadrilaterals formed by the subdivision lines might have three
collinear vertices. In this case, the block does not compute an output
image.

Quadrilateral to Quadrilateral Mode

The Inverse mapping method, Quality factor (number of
subdivisions), Background fill value(s), and Interpolation
method parameters are described in “Rectangle to Quadrilateral Mode”
on page 2-519.

Input image parameters — Use the Quadrilateral vertices
source parameter to specify how to define the input quadrilateral
vertices. If you select Specify via dialog, the Quadrilateral
vertices [r1,c1,...,r4,c4] parameter appears in the dialog box. Enter
an eight-element vector of values that represent the row and column
coordinates of the four corners of the input quadrilateral. If you select
Input port, the InPts port appears on the block. The input to this port
must be an eight-element vector of scalar values that represent the row
and column coordinates of the four corners of the input quadrilateral.
Use the If vertices are outside input image parameter to specify the
block’s behavior if the input to the InPts port contains vertices outside
the input image. Your choices are Clip, Clip and warn, or Error. If
you select Clip, the block changes the row or column values of the
vertices so that the quadrilateral fits entirely within the input image.
If you select the Output validity of quadrilateral vertices (three
points cannot be collinear) check box, the InPtsValid port appears
on the block. If the quadrilateral vertices are not collinear, the block
outputs 1 at this port. Otherwise it outputs 0, and the block does not
compute an output image.

2-524

Projective Transformation

Output image parameters — Use the Quadrilateral vertices
source parameter to specify how to define the output quadrilateral
vertices. If you select Specify via dialog, the Quadrilateral
vertices [r1,c1,...,r4,c4] and Size parameters appear in the dialog
box. For the Quadrilateral vertices [r1,c1,...,r4,c4] parameter, enter
an eight-element vector of values that represent the row and column
coordinates of the four corners of the output quadrilateral. If, for
the Size parameter, you select Full, the block output image size is
determined by the values you enter for the Quadrilateral vertices
[r1,c1,...,r4,c4] parameter. If you select User-defined, use the
Location and size [r,c,height,width] parameter to define the row
and column coordinates as well as the height and width of the output
image, which can differ from the size of the output quadrilateral. If,
for the Quadrilateral vertices source, you select Input port, the
OutPts port appears on the block. The input to this port must be
an eight-element vector of scalar values that represent the row and
column coordinates of the four corners of the output quadrilateral.
Use the Location and size [r,c,height,width] parameter to define
the row and column coordinates as well as the height and width
of the block’s output image. If you select the Output validity of
quadrilateral vertices (three points cannot be collinear) check
box, the OutPtsValid port appears on the block. If the quadrilateral
vertices are not collinear, the block outputs 1 at this port. Otherwise it
outputs 0, and the block does not compute an output image.

Note If you set the Inverse mapping method parameter to
Quadratic approximation and the Quality factor (number
of subdivisions) parameter to a value greater than 0, the
subquadrilaterals formed by the subdivision lines might have three
collinear vertices. In this case, the block does not compute an output
image.

2-525

Projective Transformation

Example

The following example shows you how to convert a rectangular image
into a quadrilateral. It also shows you how to change the sizes of the
input and output images.

1 Create a new Simulink model.

2 Click-and-drag the following blocks into your model.

Block Library Quantity

Image From
Workspace

Video and Image Processing
Blockset software / Sources

1

Projective
Transformation

Video and Image Processing
Blockset software / Geometric
Transformations

1

Video Viewer Video and Image Processing
Blockset software / Sinks

2

3 Place the blocks so your model looks similar to the following figure.

2-526

Projective Transformation

4 Use the Image From Workspace block to import an image into your
model.

• Set the Value parameter to imread('cameraman.tif').

5 Use the Projective Transformation block to transform your
rectangular image into a quadrilateral.

• Set the Quadrilateral vertices [r1,c1,...,r4,c4] parameter to
[3 40 70 360 285 35 25 5].

2-527

Projective Transformation

Note The order in which you enter the quadrilateral vertices in
the Quadrilateral vertices [r1,c1,...,r4,c4] parameter affects the
appearance of the output image. The block assumes that the first
row and column pair correspond to the new location of the upper-left
corner of the image. The second row and column pair correspond to
the new location of the upper-right corner, and so on in a clockwise
direction around the image.

6 Use the Video Viewer and Video Viewer1 blocks to view the
rectangular and quadrilateral images, respectively. Use the default
parameters.

7 Connect the blocks so that your model resembles the following figure.

8 Run the model.

2-528

Projective Transformation

The original rectangular image appears in the Video Viewer1 window.

The quadrilateral image appears in the Video Viewer window.

2-529

Projective Transformation

9 You can change the dimensions of the input image using the
parameters in the Input image parameters section of the Projective
Transformation dialog box. Set the block parameters as follows:

• Rectangular ROI = User-defined

• ROI [r,c,height,width] = [30 20 100 140]

10 Run your model. Because you cropped your input image, the
quadrilateral image is now a close-up of the man’s face and camera.

2-530

Projective Transformation

11 You can resize of the output image using the parameters in the
Output image parameters section of the Projective Transformation
dialog box. Set the block parameters as follows:

• Size = User-defined

• Location and size [r,c,height,width] = [0 0 150 150]

The Location and size [r,c,height,width] parameter defines the
row and column coordinates as well as the height and width of the
output image.

2-531

Projective Transformation

12 Run your model. The Projective Transformation block outputs a
portion of the quadrilateral image, so you can no longer see all of
the quadrilateral corners.

Fixed-Point Data Types

The following diagram shows the data types used in the Projective
Transformation block for fixed-point signals:

2-532

Projective Transformation

'�
��
����>��$����4��H���� ��,��������������)������B��C

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��B!C

��B�C

�����

��B�C��B�C

,:��9
��7������������
��������������������
��
������B�CE���B�CE���B
CE���B	CE���B�CE�������B�C;

.���./2

)-",�4"�/2

��

�../2

4�
��

.���./2

)������������#��

.���./2
)������������#��

)-",�4"�/2

4�

.���./2 �../2

)������������#��

)-",�4"�/2
��

.���./2
��

)-",�4"�/2

.���./2

�../2

)������������#��

��

��

'�0,

��

'�0,
��

)������������#�� '�0,
4�

��

��

4�

��
��

��

'�0,
��

��

'�0,
��

����

4� 4�

'�0,
4�

��)������������#��
��

'�0,
4�

��
��

'�0, �../2 '�0,

2-533

Projective Transformation

'�
��
������ �����4��H���� ��,��������������)������B��C

��B�C

��B�C

��B
C

��B�C

��B�C

��

�� ��
��B!C

��

�� ��
��B�C

��B�C

��

��

,:��9
��7������������
��������������������
��
������B�CE���B�CE���B�CE���B
CE���B	CE���B�CE�������B�C;

4�

4�

��

4�

4�

4�

4�

��
��

)-",�4"�/2

)������������#��

)������������#��
0-%,2�',(2

<
=

)������������#��

)-",�4"�/2

)������������#��

)������������#��
0-%,2�',(2

<
=

)������������#��

)-",�4"�/2
)������������#��

)������������#��

'�0,

'�0, '�0,

'�0,

'�0,

'�0,

'�0,

2-534

Projective Transformation

'�������(������4���

��B�C

'�
���������

��

4� ��

��B�C

��

��

4�

��

��B
C �!
��

��B�C

'�
���������

��

4� ��

��B�C

��

��

4�

��

��B
C ��
��

4�

4�

4�

4�

)-",�4"�/2

)������������#��

�����
)������������#��

'�0,

'�0,

)-",�4"�/2

)������������#��

�����

'�0,

'�0,

�../2

�../2

)-",�4"�/2

)������������#��

�����
)������������#��

'�0,

'�0,

)-",�4"�/2

)������������#��

�����

'�0,

'�0,

�../2

�../2

2-535

Projective Transformation

'�������(������4���
�B���������C

��B!C

'�
���������

��

4� ��

��B�C

�!

��

4�

��

��B�C !
��

��B!C

'�
���������

��

4� ��

��B�C

��

��

4�

��

��B�C �
��

4�

4�

4�

4�

)-",�4"�/2

)������������#��

�����
)������������#��

'�0,

'�0,

)-",�4"�/2

)������������#��

�����

'�0,

'�0,

�../2

�../2

)-",�4"�/2

)������������#��

�����
)������������#��

'�0,

'�0,

)-",�4"�/2

)������������#��

�����

'�0,

'�0,

�../2

�../2

2-536

Projective Transformation

'�������(������4���
�B���������C

��B	C

'�
���������

��

4� ��

��B�C

�!

��

4�

��

��B�C $!
��

��B	C

'�
���������

��

4� ��

��B�C

��

��

4�

��

��B�C $�
��

4�

4�

4�

4�

)-",�4"�/2

)������������#��

�����
)������������#��

'�0,

'�0,

)-",�4"�/2

)������������#��

�����

'�0,

'�0,

�../2

�../2

)-",�4"�/2

)������������#��

�����
)������������#��

'�0,

'�0,

)-",�4"�/2

)������������#��

�����

'�0,

'�0,

�../2

�../2

2-537

Projective Transformation

'�
��
������E�� E��$

� ��
.�����#���$��:
J"6��E�>"6�!

��

��

��&�!

�� ��

�!
��

<
=

��

� ��
.�����#���$��:
J"6��E�>"6�!

��&�!

 � ��

 !
��

<
=

��

� ��
.�����#���$��:
J"6��E�>"6�!

��&�!

$� ��

$!
��

<
=

��

��

��

�����

4�

�����

�����

��

��

��

��

4�

4�
4�

��

�$
4�

��
4�

�

.���./2

)-",�4"�/2

0-%,2�',(2

.���./2

)-",�4"�/2

0-%,2�',(2

.���./2

)-",�4"�/2

0-%,2�',(2

'�0,

'�0,

'�0,

2-538

Projective Transformation

'�
��
������$�������
����������������:�������������

� �����

4�

��$

$!

�! ��

��
��

��

��

�!

��

 !
�� 4�

��
���

��

��

�!

 ! ��

�
��

 !

$! ��

�$
��

$!

��

��

��

��

4�

4�
��

��

�� ��

��

.���./2

)-",�4"�/2

)-",�4"�/2

)-",�4"�/2)-",�4"�/2

)-",�4"�/2

'�0,

'�0,

2-539

Projective Transformation

%�
�������������
�����

��
4�

4� ��

��

��

4�
4�

�� 4�

��

4�
��

��
4�

4�

��

��

(�����
������#��

����������
�#��

����������
�#��

)-",�4"�/2

�../2
<

<)-",�4"�/2)-",�4"�/2

�../2
<

<

)-",�4"�/2

'�0,

'�0,

'�0,

2-540

Projective Transformation

%���9����������
�����

'�
��
�����:��9���9����������
������������������E�?!E�?�E�?�E�����?�;

��
4�

4�

��

4�
4�

4�

��

�����
4�

��
4�

�����

��

��
��

4�

��

�����

��
4�

��
�� 4�

��

�����

4�

4�

4�

�� ��

��
��

,:��9
��7������������
��������������������
��
����?������?�;

)-",�4"�/2

)-",�4"�/2

)-",�4"�/2
�../2

<

< �../2
<

< ?�

)-",�4"�/2

)-",�4"�/2

)-",�4"�/2

)-",�4"�/2
�../2

<

<
0-%,2�',(2

<

=
?!

2-541

Projective Transformation

%���9����������
������B���������C

����������
�#��

��
4�

��

����������
�#��

��
4�

��

����������
�#��

��
4�

��

����������
�#��

��
4�

��

4�

4� ��
��

��

4�

(�����
������#��

4�

��

��

��

'�0,)-",�4"�/2

'�0,)-",�4"�/2

'�0,)-",�4"�/2

'�0,)-",�4"�/2

�../2
<

< �../2
<

< �../2
<

< '�0,

You can set the product, accumulator, matrix, and output data types in
the block mask as discussed next.

2-542

Projective Transformation

Dialog
Box

The Main pane of the Projective Transformation dialog box appears
as shown in the following figure.

2-543

Projective Transformation

Mode
Select the shape you want to convert. Your choices are
Rectangle to quadrilateral, Quadrilateral to rectangle,
or Quadrilateral to quadrilateral.

Inverse mapping method
Specify the algorithm the block uses to implement the projective
transformation. Your choices are Exact solution or Quadratic
approximation.

Quality factor (number of subdivisions)
Enter a scalar integer value greater than or equal to 0 and
less than or equal to the height or width of the input image,
whichever is smaller. The larger the quality factor, the closer the
approximate solution is to the exact solution. This parameter
is visible if, for the Inverse mapping method parameter, you
select Quadratic approximation. Tunable in some modes.

Background fill value(s)
Set the background of the output image. If the block outputs an
intensity image, enter a scalar value. If the block outputs an
RGB image, enter a scalar value or a three-element vector that
specifies an RGB triplet. Tunable in some modes.

Interpolation method
Specify how the block calculates the pixel intensities in the output
image. If you select Nearest neighbor, the block uses the value
of the nearest pixel for the new pixel intensity. If you select
Bilinear, the new pixel value is the weighted average of the four
nearest pixel intensities. If you select Bicubic, the new pixel
value is the weighted average of the 16 nearest pixel intensities.

Image signal
Specify how to input and output a color video signal. If you
select One multidimensional signal, the block accepts an
M-by-N-by-P color video signal, where P is the number of color
planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port accepts one
M-by-N plane of an RGB video stream.

2-544

Projective Transformation

Rectangular ROI
Define the portion of the input image that the block transforms
into a quadrilateral. Your choices are Full image or
User-defined.

Rectangular ROI source
Specify whether you want to define the ROI using the Projective
Transformation dialog box or an input port. This parameter
is visible if, for the Rectangular ROI parameter, you select
User-defined.

ROI [r,c,height,width]
Enter the row and column coordinates of the upper-left corner
as well as the height and width of the ROI. This parameter is
visible if, for the Rectangular ROI source parameter, you select
Specify via dialog. Tunable in some modes.

If ROI is invalid
Specify the block’s behavior if the four-element vector input
to the InROI port contains values that are outside the input
image. Your choices are Clip, Clip and warn, or Error. During
code generation with Real-Time Workshop, this parameter is
automatically set to Clip. This parameter is visible if, for the
Rectangular ROI source parameter, you select Input port.

Quadrilateral vertices source
Specify how to define the quadrilateral vertices. Your choices are
Specify via dialog or Input port.

Quadrilateral vertices [r1,c1,...,r4,c4]
Enter an eight-element vector of values that represent the row
and column coordinates of the four corners of the quadrilateral.
This parameter is visible if, for the Quadrilateral vertices
source parameter, you select Specify via dialog.

Size
Specify the size of the output image. If you select Full, the
block output size is determined by the values you enter for
the Quadrilateral vertices [r1,c1,...,r4,c4] or Rectangle
location and size [r,c,height,width] parameter. If you select

2-545

Projective Transformation

User-defined, the Location and size [r,c,height,width]
parameter appears in the dialog box. This parameter is visible if,
for the Quadrilateral vertices source parameter or Rectangle
size source parameter, you select Specify via dialog.

Location and size [r,c,height,width]
Define the row and column coordinates as well as the height
and width of the output image. This parameter is visible if, for
the Quadrilateral vertices source or Rectangle size source
parameter, you select Input port or if, for the Size parameter,
you select User-defined.

If vertices are outside input image
Specify the block’s behavior if the input to the InPts port is
invalid. Your choices are Clip, Clip and warn, or Error. During
code generation with Real-Time Workshop, this parameter is
automatically set to Clip. This parameter is visible if, for the
Mode parameter, you select Quadrilateral to rectangle or
Quadrilateral to quadrilateral and, for the Quadrilateral
vertices source parameter, you select Input port.

Output validity of quadrilateral vertices (three points cannot
be collinear)

Select this check box if you want the block to output 0 at the Valid
port if three quadrilateral vertices are collinear. Otherwise, the
block outputs 1 at this port.

Rectangle size source
Specify how to define the rectangle size. Your choices are Specify
via dialog and Input port.

Rectangle location and size [r,c,height,width]
Enter scalar values that represent the row and column coordinates
as well as the height and width of the output rectangle. This
parameter is visible if, for the Rectangle size source parameter,
you select Specify via dialog.

The Data Types pane of the Projective Transformation dialog box
appears as follows.

2-546

Projective Transformation

2-547

Projective Transformation

Rounding mode
Select the rounding mode for fixed-point operations. For Boolean
input, the Product 3 and Accumulator 3 Rounding mode
parameter is always set to Nearest.

Overflow mode
Select the overflow mode for fixed-point operations.

Product 1, 2, 3

As depicted in the previous figure, the output of the multiplier is
placed into the product output data type and scaling. Use this
parameter to specify how to designate the product output word
and fraction lengths.

• When you select Same as input, the characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output in
bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

2-548

Projective Transformation

Accumulator 1, 2, 3, 4

As depicted in the previous figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

• When you select Same as Product 1, 2, 3, these
characteristics match those of the product output.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator in bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Matrix
Choose how to specify the word length and fraction length of the
matrix data type:

• When you select Binary point scaling, you can enter the
word length and the fraction length of the quotient, in bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the quotient. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

2-549

Projective Transformation

Output
Choose how to specify the word length and fraction length of the
output data type:

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the effectiveness metric
in bits.

• When you select Slope and bias scaling, you can enter the
word length in bits and the slope of the effectiveness metric.
The bias of all signals in the Video and Image Processing
Blockset blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] Wolberg, George. Digital Image Warping. Washington: IEEE
Computer Society Press, 1990.

See Also Resize Video and Image Processing Blockset
software

Rotate Video and Image Processing Blockset
software

Shear Video and Image Processing Blockset
software

Translate Video and Image Processing Blockset
software

2-550

PSNR

Purpose Compute peak signal-to-noise ratio (PSNR) between images

Library Statistics

Description The PSNR block computes the peak signal-to-noise ratio, in decibels,
between two images. This ratio is often used as a quality measurement
between the original and a compressed image. The higher the PSNR,
the better the quality of the compressed, or reconstructed image.

The Mean Square Error (MSE) and the Peak Signal to Noise Ratio
(PSNR) are the two error metrics used to compare image compression
quality. The MSE represents the cumulative squared error between
the compressed and the original image, whereas PSNR represents a
measure of the peak error. The lower the value of MSE, the lower the
error.

To compute the PSNR, the block first calculates the mean-squared error
using the following equation:

MSE

I m n I m n

M N
M N=

−∑ [(,) (,)]

*
,

1 2
2

In the previous equation,M and N are the number of rows and columns
in the input images, respectively. Then the block computes the PSNR
using the following equation:

PSNR
R

MSE
=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟10 10

2
log

In the previous equation, R is the maximum fluctuation in the input
image data type. For example, if the input image has a double-precision
floating-point data type, then R is 1. If it has an 8-bit unsigned integer
data type, R is 255, etc.

2-551

PSNR

Recommendation for Computing PSNR for Color Images

Different approaches exist for computing the PSNR of a color image.
Because the human eye is most sensitive to luma information, compute
the PSNR for color images by converting the image to a color space that
separates the intensity (luma) channel, such as YCbCr. The Y (luma),
in YCbCr represents a weighted average of R, G, and B. G is given the
most weight, again because the human eye perceives it most easily.
With this consideration, compute the PSNR only on the luma channel.

Ports

Port Output Supported Data Types
Complex
Values
Supported

I1 Scalar, vector, or matrix
of intensity values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

I2 Scalar, vector, or matrix
of intensity values

Same as I1 port No

Output Scalar value that
represents the PSNR

• Double-precision floating point

For fixed-point or integer input,
the block output is double-precision
floating point. Otherwise, the block
input and output are the same data
type.

No

2-552

PSNR

Dialog
Box

The PSNR dialog box appears as shown in the following figure.

2-553

Read AVI File (Obsolete)

Purpose Read uncompressed video frames from AVI file

Library vipobslib

Description
Note The Read AVI File block is obsolete. It may be removed in a
future version of the Video and Image Processing Blockset blocks. Use
the replacement block From Multimedia File.

The Read AVI File block reads video frames from an uncompressed AVI
file and import them into a Simulink model. You can view the video
frames using a To Video Display block or Video Viewer block. This
block does not support audio samples. Also, this block is supported
for simulation only. It produces an error during Real-Time Workshop
code generation.

The output ports of the Read AVI File block change according the
content of the AVI file. If the file contains RGB video frames, the R, G,
and B ports appear on the block. If the file contains intensity video
frames, the I port appears on the block.

Port Output Supported Data Types
Complex
Values
Supported

I Scalar, vector, or matrix of
intensity values

• Double-precision floating point

• Single-precision floating point

• 8-, 16- 32-bit signed integer

• 8-, 16- 32-bit unsigned integer

No

R, G,
B

Scalar, vector, or matrix
that represents one plane
of the RGB video stream.
Outputs from the R, G,

Same as I port No

2-554

Read AVI File (Obsolete)

Port Output Supported Data Types
Complex
Values
Supported

or B ports have the same
dimensions.

EOF Scalar value Boolean No

Use the File name parameter to specify the name of the AVI file from
which to read. If the location of this file is on your MATLAB path,
enter the filename. If the location of this file is not on your MATLAB
path, use the Browse button to specify the full path to the file as well
as the filename.

If filename.avi has a colormap associated with it, the AVI file must
satisfy the following conditions or the block produces an error:

• The colormap must be empty or have 256 values.

• The data must represent an intensity image.

• The pixel values must be 8-bit.

Use the Video output data type parameter to set the data type of the
values output from the block. You can choose double, single, int8,
uint8, int16, uint16, int32, uint32, and Inherit from file. If you
choose double or single, the block scales the input pixels values and
outputs values between 0 and 1. If you choose int8, uint8, int16,
uint16, int32, or uint32, the blocks scales the input pixel values and
outputs values between the minimum and maximum values supported
by the chosen data type. If you choose Inherit from file, the block
does not scale the input pixel values.

Use the Number of times to play file parameter to enter the number
of times to play the file. The number you enter must be a positive
integer or inf, to play the file until you stop the simulation.

Use the Output end-of-file indicator parameter to determine when
the last video frame in the AVI file is output from the block. When you

2-555

Read AVI File (Obsolete)

select this check box, a Boolean output port labeled EOF appears on the
block. The output from the EOF port is 1 when the last video frame is
output from the block. Otherwise, the output from the EOF port is 0.

Dialog
Box

The Read AVI File dialog box appears as shown in the following figure.

File name
Specify the name of the AVI file from which to read.

Video output data type
Set the data type of the video data output from the block.

Number of times to play file
Enter a positive integer or inf to represent the number of times
to play the file.

Output end-of-file indicator
Use this check box to determine whether the output is the last
video frame in the AVI file.

2-556

Read AVI File (Obsolete)

See Also From Multimedia File Video and Image Processing Blockset
software

Image From File Video and Image Processing Blockset
software

Image From
Workspace

Video and Image Processing Blockset
software

To Multimedia File Signal Processing Blocksetsoftware

To Video Display Video and Image Processing Blockset
software

Video FromWorkspace Video and Image Processing Blockset
software

Video Viewer Video and Image Processing Blockset
software

2-557

Read Binary File

Purpose Read binary video data from files

Library Sources

Description The Read Binary File block reads video data from a binary file and
imports it into a Simulink model.

This block takes user specified parameters that describe the format of
the video data. These parameters together with the raw binary file,
which stores only raw pixel values, creates the video data signal for a
Simulink model. The video data read by this block must be stored in
row major format.

Note This block supports code generation only for platforms that have
file I/O available. You cannot use this block to do code generation with
RTWin (Real-Time Windows Target™).

Port Output Supported Data Types
Complex
Values
Supported

Output Scalar, vector, or matrix of
integer values

• 8-, 16- 32-bit signed integer

• 8-, 16- 32-bit unsigned integer

No

EOF Scalar value Boolean No

Four Character Code Video Formats

Four Character Codes (FOURCC) identify video formats. For more
information about these codes, see http://www.fourcc.org.

Use the Four character code parameter to identify the binary file
format. Then, use the Rows and Cols parameters to define the size
of the output matrix. These dimensions should match the matrix
dimensions of the data inside the file.

2-558

http://www.fourcc.org

Read Binary File

Custom Video Formats

If your binary file contains data that is not in FOURCC format, you can
configure the Read Binary File block to understand a custom format:

• Use the Bit stream format parameter to specify whether your data
is planar or packed. If your data is packed, use the Rows and Cols
parameters to define the size of the output matrix.

• Use the Number of output components parameter to specify the
number of components in the binary file. This number corresponds to
the number of block output ports.

• Use the Component, Bits, Rows, and Cols parameters to specify
the component name, bit size, and size of the output matrices,
respectively. The block uses the Component parameter to label
the output ports.

• Use the Component order in binary file parameter to specify how
the components are arranged within the file.

• Select the Interlaced video check box if the binary file contains
interlaced video data.

• Select the Input file has signed data check box if the binary file
contains signed integers.

• Use the Byte order in binary file to indicate whether your binary
file has little endian or big endian byte ordering.

2-559

Read Binary File

Dialog
Box

The Read Binary File dialog box appears as shown in the following
figure.

File name
Specify the name of the binary file to read. If the location of this
file is on your MATLAB path, enter the filename. If the location of
this file is not on your MATLAB path, use the Browse button to
specify the full path to the file as well as the filename.

Video format
Specify the format of the binary video data. Your choices are
Four character codes or Custom. See “Four Character Code
Video Formats” on page 2-558 or “Custom Video Formats” on page
2-559 for more details.

Four character code
From the drop-down list, select the binary file format.

2-560

Read Binary File

Frame size: Rows, Cols
Define the size of the output matrix. These dimensions should
match the matrix dimensions of the data inside the file.

Line ordering
Specify how the block fills the output matrix.If you select Top
line first, the block first fills the first row of the output matrix
with the contents of the binary file. It then fills the other rows
in increasing order. If you select Bottom line first, the block
first fills the last row of the output matrix. It then fills the other
rows in decreasing order.

Number of times to play file
Specify the number of times to play the file. The number you
enter must be a positive integer or inf, to play the file until you
stop the simulation.

Output end-of-file indicator
Specifies the output is the last video frame in the binary file.
When you select this check box, a Boolean output port labeled
EOF appears on the block. The output from the EOF port is 1
when the last video frame in the binary file is output from the
block. Otherwise, the output from the EOF port is 0.

Sample time
Specify the sample period of the output signal.

2-561

Read Binary File

Bit stream format
Specify whether your data is planar or packed.

Frame size: Rows, Cols
Define the size of the output matrix. This parameter appears
when you select a Bit stream format parameter of Packed.

Number of output components
Specify the number of components in the binary file.

Component, Bits, Rows, Cols
Specify the component name, bit size, and size of the output
matrices, respectively.

2-562

Read Binary File

Component order in binary file
Specify the order in which the components appear in the binary
file.

Interlaced video
Select this check box if the binary file contains interlaced video
data.

Input file has signed data
Select this check box if the binary file contains signed integers.

Byte order in binary file
Use this parameter to indicate whether your binary file has little
endian or big endian byte ordering.

See Also From Multimedia
File

Video and Image Processing Blockset

Write Binary File Video and Image Processing Blockset

2-563

Resize

Purpose Enlarge or shrink image sizes

Library Geometric Transformations

vipgeotforms

Description The Resize block enlarges or shrinks an image by resizing the image
along one dimension (row or column). Then, it resizes the image along
the other dimension (column or row).

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Image /
Input

M-by-N matrix of intensity
values or an M-by-N-by-P
color video signal where P is
the number of color planes

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

ROI Four-element vector that
defines the ROI

• Double-precision floating point
(only supported if the input to
the Input port is floating point)

• Single-precision floating point
(only supported if the input to
the Input port is floating point)

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

2-564

Resize

Port Input/Output Supported Data Types
Complex
Values
Supported

Output Resized image Same as Input port No

Flag Boolean value that indicates
whether the ROI is within the
image bounds

Boolean No

If the data type of the input signal is floating point, the output has
the same data type.

Use the Specify parameter to designate the parameters to use to
resize your image. Your choices are Output size as a percentage
of input size, Number of output columns and preserve aspect
ratio, Number of output rows and preserve aspect ratio, Number
of output rows and columns.

If, for the Specify parameter, you select Output size as a
percentage of input size, the Resize factor in % parameter
appears in the dialog box. Enter a scalar percentage value that is
applied to both rows and columns. You must enter a scalar value that
is greater than 0. For a 0< resize factor <100, the block shrinks the
image. For resize factor =100, the block does not change the image. For
resize factor >100, the block enlarges the image. The dimensions of the
output matrix depend on the Resize factor in % parameter and are
given by the following equations:

number_output_rows =
round(number_input_rows*resize_factor/100);

number_output_cols =
round(number_input_cols*resize_factor/100);

Alternatively, you can enter a two-element vector, where the first
element is the percentage by which to resize the rows and the second
element is the percentage by which to resize the columns.

If, for the Specify parameter, you select Number of output columns
and preserve aspect ratio, the Number of output columns

2-565

Resize

parameter appears in the dialog box. Enter a scalar value that
represents the number of columns you want the output image to have.
The block calculates the number of output rows so that the output
image has the same aspect ratio as the input image.

If, for the Specify parameter, you select Number of output rows and
preserve aspect ratio, the Number of output rows parameter
appears in the dialog box. Enter a scalar value that represents the
number of rows you want the output image to have. The block calculates
the number of output columns so that the output image has the same
aspect ratio as the input image.

If, for the Specify parameter, you select Number of output rows
and columns, the Number of output rows and columns parameter
appears in the dialog box. Enter a two-element vector, where the first
element is the number of rows in the output image and the second
element is the number of columns. In this case, the aspect ratio of the
image can change.

Use the Interpolation method parameter to specify which
interpolation method the block uses to resize the image. If you select
Nearest neighbor, the block uses one nearby pixel to interpolate the
pixel value. This selection is the most computationally efficient, but it is
the least accurate. If you select Bilinear, the block uses four nearby
pixels to interpolate the pixel value. If you select Bicubic or Lanczos2,
the block uses 16 nearby pixels to interpolate the pixel value. If you
select Lanczos3, the block uses 36 surrounding pixels to interpolate
the pixel value.

The Resize block performs optimally when the Interpolation method
parameter is set to Nearest neighbor and one of the following
conditions is met:

• The Resize factor in % parameter is a multiple of 100.

• Dividing 100 by the Resize factor in % parameter value results
in an integer value.

2-566

Resize

Shrinking an image can introduce high frequency components into the
image and aliasing might occur. If you select the Perform antialiasing
when resize factor is between 0 and 100 check box, the block
performs low pass filtering on the input image before shrinking it.

ROI Processing

To resize a particular region of each image, select the Enable ROI
processing check box. This option is available under these conditions:

• Specify = Number of output rows and columns

• Interpolation method = Nearest neighbor, Bilinear, or Bicubic

• Clear the Perform antialiasing when resize factor is between 0
and 100 check box.

If you select the Enable ROI processing check box, the ROI port
appears on the block. Use this port to define a region of interest (ROI)
in the input matrix, I, that you want to resize. The input to this port
must be a four-element vector, [row column height width]. The first two
elements define the upper-left corner of the ROI, and the second two
elements define the height and width of the ROI.

If you select the Enable ROI processing check box, the Output flag
indicating if any part of ROI is outside image bounds check box
appears in the dialog box. If you select this check box, the Flag port
appears on the block. The following tables describe the Flag port output.

Flag Port Output Description

0 ROI is completely inside the input
image.

1 ROI is completely or partially
outside the input image.

Fixed-Point Data Types

The following diagram shows the data types used in the Resize block for
fixed-point signals.

2-567

Resize

You can set the interpolation weights table, product output,
accumulator, and output data types in the block mask.

2-568

Resize

Dialog
Box

The Main pane of the Resize dialog box appears as shown in the
following figure:

2-569

Resize

Specify
Specify which aspects of the image to resize. Your choices are
Output size as a percentage of input size, Number of
output columns and preserve aspect ratio, Number of
output rows and preserve aspect ratio, Number of output
rows and columns.

Resize factor in %
Enter a scalar percentage value that is applied to both rows and
columns or a two-element vector, where the first element is the
percentage by which to resize the rows and the second element is
the percentage by which to resize the columns. This parameter is
visible if, for the Specify parameter, you select Output size as
a percentage of input size.

Number of output columns
Enter a scalar value that represents the number of columns you
want the output image to have. This parameter is visible if, for
the Specify parameter, you select Number of output columns
and preserve aspect ratio.

Number of output rows
Enter a scalar value that represents the number of rows you
want the output image to have. This parameter is visible if, for
the Specify parameter, you select Number of output rows and
preserve aspect ratio.

Number of output rows and columns
Enter a two-element vector, where the first element is the
number of rows in the output image and the second element is the
number of columns. This parameter is visible if, for the Specify
parameter, you select Number of output rows and columns.

Interpolation method
Determine which interpolation method the block uses to resize the
image. If you select Nearest neighbor, the block uses one nearby
pixel to interpolate the pixel value. If you select Bilinear, the
block uses two nearby pixels to interpolate the pixel value. If you
select Bicubic or Lanczos2, the block uses four nearby pixels to

2-570

Resize

interpolate the pixel value. If you select Lanczos3, the block uses
six surrounding pixels to interpolate the pixel value.

Perform antialiasing when resize factor is between 0 and 100
If you select this check box, the block performs low-pass filtering
on the input image before shrinking it to prevent aliasing.

Enable ROI processing
Select this check box to resize a particular region of each image.
This parameter is available when the Specify parameter is set
to Number of output rows and columns, the Interpolation
method parameter is set to Nearest neighbor, Bilinear, or
Bicubic, and the Perform antialiasing when resize factor is
between 0 and 100 check box is not selected.

Output flag indicating if any part of ROI is outside image
bounds

If you select this check box, the Flag port appears on the block.
The block outputs 1 at this port if the ROI is completely or
partially outside the input image. Otherwise, it outputs 0.

The Data Types pane of the Resize dialog box appears as shown in
the following figure.

2-571

Resize

Rounding mode
Select the rounding mode for fixed-point operations.

2-572

Resize

Overflow mode
Select the overflow mode for fixed-point operations.

Interpolation weights table
Choose how to specify the word length of the values of
the interpolation weights table. The fraction length of the
interpolation weights table values is always equal to the word
length minus one:

• When you select Same as input, the word length of the
interpolation weights table values match that of the input to
the block.

• When you select Binary point scaling, you can enter the
word length of the interpolation weights table values, in bits.

• When you select Slope and bias scaling, you can enter the
word length of the interpolation weights table values, in bits.

Product output

As depicted in the preceding diagram, the output of the multiplier
is placed into the product output data type and scaling. Use this
parameter to specify how to designate this product output word
and fraction lengths.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

2-573

Resize

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Accumulator

As depicted in the preceding diagram, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

2-574

Resize

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as input, these characteristics match
those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] Ward, Joseph and David R. Cok. "Resampling Algorithms for
Image Resizing and Rotation", Proc. SPIE Digital Image Processing
Applications, vol. 1075, pp. 260-269, 1989.

[2] Wolberg, George. Digital Image Warping. Washington: IEEE
Computer Society Press, 1990.

See Also Rotate Video and Image Processing Blockset software

Shear Video and Image Processing Blockset software

Translate Video and Image Processing Blockset software

imresize Image Processing Toolbox software

2-575

Rotate

Purpose Rotate image by specified angle

Library Geometric Transformations

Description Use the Rotate block to rotate an image by an angle specified in radians.

Note This block supports intensity and color images on its ports.

Port Description

Image M-by-N matrix of intensity values or an M-by-N-by-P color video
signal where P is the number of color planes

Angle Rotation angle

Output Rotated matrix

The Rotate block uses the 3-pass shear rotation algorithm to compute
its values, which is different than the algorithm used by the imrotate
function in the Image Processing Toolbox.

Fixed-Point Data Types

The following diagram shows the data types used in the Rotate block
for bilinear interpolation of fixed-point signals.

2-576

Rotate

You can set the angle values, product output, accumulator, and output
data types in the block mask.

The Rotate block requires additional data types. The Sine table value
has the same word length as the angle data type and a fraction length
that is equal to its word length minus one. The following diagram shows
how these data types are used inside the block.

2-577

Rotate

Note If overflow occurs, the rotated image might appear distorted.

2-578

Rotate

Dialog
Box

The Main pane of the Rotate dialog box appears as shown in the
following figure.

2-579

Rotate

Output size
Specify the size of the rotated matrix. If you select Expanded
to fit rotated input image, the block outputs a matrix that
contains all the rotated image values. If you select Same as input
image, the block outputs a matrix that contains the middle part
of the rotated image. As a result, the edges of the rotated image
might be cropped. Use the Background fill value parameter to
specify the pixel values outside the image.

Rotation angle source
Specify how to enter your rotation angle. If you select Specify
via dialog, the Angle (radians) parameter appears in the
dialog box.

If you select Input port, the Angle port appears on the block.
The block uses the input to this port at each time step as your
rotation angle. The input to the Angle port must be the same data
type as the input to the I port.

Angle (radians)
Enter a real, scalar value for your rotation angle. This parameter
is visible if, for the Rotation angle source parameter, you select
Specify via dialog.

When the rotation angle is a multiple of pi/2, the block uses a more
efficient algorithm. If the angle value you enter for the Angle
(radians) parameter is within 0.00001 radians of a multiple of
pi/2, the block rounds the angle value to the multiple of pi/2 before
performing the rotation.

Maximum angle (enter pi radians to accommodate all positive
and negative angles)

Enter the maximum angle by which to rotate the input image.
Enter a scalar value, between 0 and  radians. The block

determines which angle, 0 ≤ ≤angle anglemax , requires the
largest output matrix and sets the dimensions of the output port
accordingly.

2-580

Rotate

This parameter is visible if you set the Output size parameter,
to Expanded to fit rotated input image, and the Rotation
angle source parameter toInput port.

Display rotated image in
Specify how the image is rotated. If you select Center, the image
is rotated about its center point. If you select Top-left corner,
the block rotates the image so that two corners of the rotated
input image are always in contact with the top and left sides of
the output image.

This parameter is visible if, for the Output size parameter, you
select Expanded to fit rotated input image, and, for the
Rotation angle source parameter, you select Input port.

Sine value computation method
Specify the value computation method. If you select
Trigonometric function, the block computes sine and cosine
values it needs to calculate the rotation of your image during the
simulation. If you select Table lookup, the block computes and
stores the trigonometric values it needs to calculate the rotation
of your image before the simulation starts. In this case, the block
requires extra memory.

Background fill value
Specify a value for the pixels that are outside the image.

Interpolation method
Specify which interpolation method the block uses to rotate the
image. If you select Nearest neighbor, the block uses the value
of one nearby pixel for the new pixel value. If you select Bilinear,
the new pixel value is the weighted average of the four nearest
pixel values. If you select Bicubic, the new pixel value is the
weighted average of the sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of
the computation. Therefore, the Nearest-neighbor interpolation
is the most computationally efficient. However, because the
accuracy of the method is proportional to the number of pixels

2-581

Rotate

considered, the Bicubic method is the most accurate. For
more information, see “Geometric Transformation Interpolation
Methods” in the Video and Image Processing Blockset User’s
Guide.

The Data Types pane of the Rotate dialog box appears as shown in
the following figure.

2-582

Rotate

2-583

Rotate

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Angle values
Choose how to specify the word length and the fraction length of
the angle values.

• When you select Same word length as input, the word length
of the angle values match that of the input to the block. In this
mode, the fraction length of the angle values is automatically
set to the binary-point only scaling that provides you with the
best precision possible given the value and word length of the
angle values.

• When you select Specify word length, you can enter the word
length of the angle values, in bits. The block automatically sets
the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the angle values, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the angle values. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

This parameter is only visible if, for the Rotation angle source
parameter, you select Specify via dialog.

2-584

Rotate

Product output

As depicted in the previous figure, the output of the multiplier is
placed into the product output data type and scaling. Use this
parameter to specify how to designate this product output word
and fraction lengths.

• When you select Same as first input, these characteristics
match those of the input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Accumulator

2-585

Rotate

As depicted in the previous figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

2-586

Rotate

Supported
Data
Types

Port Supported Data Types

Image • Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

Angle Same as Image port

Output Same as Image port

If the data type of the input signal is floating point, the output signal is
the same data type as the input signal.

References [1] Wolberg, George. Digital Image Warping. Washington: IEEE
Computer Society Press, 1990.

See Also Resize Video and Image Processing Blockset software

Translate Video and Image Processing Blockset software

Shear Video and Image Processing Blockset software

imrotate Image Processing Toolbox software

2-587

SAD (Obsolete)

Purpose Perform 2-D sum of absolute differences (SAD)

Library vipobslib

Description
Note The SAD block is obsolete. It may be removed in a future
version of the Video and Image Processing Blocksetsoftware. Use the
replacement block Template Matching.

The SAD block finds the similarity between two input images by
performing the sum of absolute differences. The greater the similarity
between the two matrices, the smaller the SAD values that result.
Assume that input matrix I has dimensions (Mi, Ni) and the input
matrix Template has dimensions (Mt, Nt). The equation for the
two-dimensional discrete SAD is

C j k abs I m j n k T m n
n

Nt

m

Mt
(,) ((,) (,))

()()
= + + −

=

−

=

−

∑∑
0

1

0

1

where

0 1≤ < − +j Mi Mt

and

0 1≤ < − +k Ni Nt

2-588

SAD (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

I Matrix of intensity
values

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

Template Matrix of intensity
values

Same as I port No

ROI Four-element vector
that defines the ROI

• Double-precision floating point

• Single-precision floating point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

Val Matrix of SAD values • Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

Idx Vector that represents
the zero-based index
location of the minimum
SAD value

• 32-bit signed integers No

2-589

SAD (Obsolete)

Port Input/Output Supported Data Types
Complex
Values
Supported

NVals N-by-N matrix of SAD
values centered around
theminimum SAD value

Same as Val port No

NValid Boolean 0 or 1 that
represents whether
or not the block went
beyond the dimensions
of the SAD value matrix
to construct an N-by-N
matrix around the
minimum SAD value

Boolean No

The data type of the two input signals must be the same. The output
signal is the same data type as the input signals.

The dimensions of the output at the Val port are determined by the
sizes of the inputs at ports I and Template. If the input at port I has
dimensions (Mi, Ni) and the input at the Template port dimensions (Mt,
Nt), then the output has dimensions (Mi-Mt+1, Ni-Nt+1).

Use the Output parameter to determine the output of the block. If you
select SAD values, the block outputs the SAD values at the Val port. If
you select Minimum SAD value index, the block outputs the zero-based
index location of the minimum SAD value at the Idx port.

If, for the Output parameter, you select Minimum SAD value index,
the Search method parameter appears in the dialog box. If you
select Exhaustive, the block searches the two input matrices for the
minimum difference pixel-by-pixel. This process is described by the
previous equation and is computationally expensive.

If, for the Search method parameter, you select Three-step, the
block searches the two input matrices for the minimum difference
using a steadily decreasing step size. The block begins with a step size
approximately equal to half the maximum search range. In each step,

2-590

SAD (Obsolete)

the block compares the central point of the search region to eight search
points located on the boundaries of the region and moves the central
point to the search point whose values is the closest to that of the
central point. The block then decrements the step by one, and begins
the process again. The search terminates with a match within one pixel.

If, for the Output parameter, you select Minimum SAD value index,
the Use ROI for input I check box appears in the dialog box. If you
select this check box, the ROI port appears on the block. Use this port to
define a region of interest (ROI) in the input matrix, I, over which you
want to compute the SAD. The input to this port must be a four-element
vector, [row column height width]. The first two elements define the
upper-left corner of the ROI, and the second two elements define the
height and width of the ROI.

Use the Invalid ROI parameter to specify the block’s behavior if you
enter a ROI that is outside the bounds of the input matrix, I. The
options are

• Ignore -- Proceed with the computation and do not issue an alert.
The output is not valid.

• Warn -- Display a warning message in the MATLAB Command
Window, and continue the simulation. The output is not valid.

• Error -- Display an error dialog box and terminate the simulation.

If, for the Output parameter, you select Minimum SAD value index,
the Output NxN matrix of SAD values around minimum check box
appears on the dialog box. If you select this check box, the NVals and
NValid ports appear on the block. The block outputs an N-by-N matrix
of SAD values centered around the minimum SAD value at the NVals
port. Use the Size (N) of square matrix parameter to determine the
size of this matrix. The value you enter must be a real-valued, odd
integer that is greater than or equal to 1.

If the block must go beyond the dimensions of the SAD value matrix
to construct an N-by-N matrix around the minimum SAD value, the
values outside the SAD value matrix are 0. In this case, the block

2-591

SAD (Obsolete)

outputs a Boolean 0 at the NValid port. If the block does not go beyond
the dimensions of the SAD value matrix to construct an N-by-N matrix
around the minimum SAD value, the block outputs a Boolean 1 at the
NValid port.

Fixed-Point Data Types

The following diagram shows the data types used in the SAD block for
fixed-point signals.

You can set the accumulator, and output data types in the block mask
as discussed in the next section.

2-592

SAD (Obsolete)

Dialog
Box

TheMain pane of the SAD dialog box appears as shown in the following
figure.

Output
Specify the output of the block. Your choices are SAD values or
Minimum SAD value index. If you select Minimum SAD value
index, the block outputs the zero-based index location of the
minimum SAD value.

Search method
Specify how the block searches for the minimum difference
between the two input matrices. If you select Exhaustive, the
block searches for the minimum difference pixel-by-pixel. If you
select Three-step, the block searches for the minimum difference

2-593

SAD (Obsolete)

using a steadily decreasing step size. This parameter is visible if,
for the Output parameter, you select Minimum SAD value index.

Use ROI for input I
If you select this check box, the ROI port appears on the block. Use
this port to define a region of interest (ROI) in the input matrix,
I, over which you want to compute the SAD. This parameter is
visible if, for the Output parameter, you select Minimum SAD
value index.

Invalid ROI
Specify the block’s behavior if you enter a ROI that is outside the
bounds of the input matrix, I. The options are Ignore, Warn, or
Error.

Output NxN matrix of SAD values around minimum
If you select this check box, the NVals and NValid ports appear
on the block. The block outputs an N-by-N matrix of SAD values
centered around the minimum SAD value at the NVals port. If the
block must go beyond the dimensions of the SAD value matrix to
construct the N-by-N output matrix, the block outputs a Boolean
0 at the NValid port. Otherwise, the block outputs a Boolean 1
at the NValid port. This parameter is visible if, for the Output
parameter, you select Minimum SAD value index.

Size (N) of square matrix
Enter an odd number that determines the size of the N-by-N
matrix of SAD values. This parameter is visible if you select the
Output NxN matrix of SAD values around minimum check
box.

The Fixed-point pane of the SAD dialog box appears as shown in the
following figure.

2-594

SAD (Obsolete)

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

2-595

SAD (Obsolete)

Accumulator

As depicted in the previous figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

• When you select Same as first input, these characteristics
match those of the input to the block. When you have a Boolean
input, you cannot select this choice.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as first input, these characteristics
match those of the first input to the block. When you have a
Boolean input, you cannot select this choice.

2-596

SAD (Obsolete)

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

This parameter is not visible if, for the Output parameter you
select Minimum SAD value index, and you clear the Output
NxN matrix of SAD values around minimum check box.

Lock scaling against changes by the autoscaling tool
Select this parameter to prevent any fixed-point scaling you
specify in this block mask from being overridden by the
autoscaling tool in the Fixed-Point Tool. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the
Simulink documentation.

References [1] Koga, T., et al. Motion-compensated interframe coding for video
conferencing. In Nat. Telecommun. Conf., Nov. 1981, G5.3.1-5, New
Orleans, LA.

[2] Wang, Yao, Jorn Ostermann, Ya-Qin Zhang. Video Processing and
Communications. Upper Saddle River, NJ: Prentice Hall, 2002.

2-597

Shear

Purpose Shift rows or columns of image by linearly varying offset

Library Geometric Transformations

vipgeotforms

Description The Shear block shifts the rows or columns of an image by a gradually
increasing distance left or right or up or down.

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

• Double-precision floating point

• Single-precision floating point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

S Two-element vector that
represents the number of
pixels by which you want to
shift your first and last rows or
columns

Same as I port No

Output Shifted image Same as I port No

If the data type of the input to the I port is floating point, the input to
the S port of this block must be the same data type. Also, the block
output is the same data type.

Use the Shear direction parameter to specify whether you want to
shift the rows or columns. If you select Horizontal, the first row

2-598

Shear

has an offset equal to the first element of the Row/column shear
values [first last] vector. The following rows have an offset that
linearly increases up to the value you enter for the last element of
the Row/column shear values [first last] vector. If you select
Vertical, the first column has an offset equal to the first element of the
Row/column shear values [first last] vector. The following columns
have an offset that linearly increases up to the value you enter for the
last element of the Row/column shear values [first last] vector.

Use the Output size after shear parameter to specify the size of the
sheared image. If you select Full, the block outputs a matrix that
contains the entire sheared image. If you select Same as input image,
the block outputs a matrix that is the same size as the input image and
contains the top-left portion of the sheared image. Use the Background
fill value parameter to specify the pixel values outside the image.

Use the Shear values source parameter to specify how to enter your
shear parameters. If you select Specify via dialog, the Row/column
shear values [first last] parameter appears in the dialog box. Use
this parameter to enter a two-element vector that represents the
number of pixels by which you want to shift your first and last rows
or columns. For example, if for the Shear direction parameter you
select Horizontal and, for the Row/column shear values [first last]
parameter, you enter [50 150], the block moves the top-left corner
50 pixels to the right and the bottom left corner of the input image
150 pixels to the right. If you want to move either corner to the left,
enter negative values. If for the Shear direction parameter you
select Vertical and, for the Row/column shear values [first last]
parameter, you enter [-10 50], the block moves the top-left corner 10
pixels up and the top right corner 50 pixels down. If you want to move
either corner down, enter positive values.

Use the Interpolation method parameter to specify which
interpolation method the block uses to shear the image. If you select
Nearest neighbor, the block uses the value of the nearest pixel for
the new pixel value. If you select Bilinear, the new pixel value is the
weighted average of the two nearest pixel values. If you select Bicubic,

2-599

Shear

the new pixel value is the weighted average of the four nearest pixel
values.

The number of pixels the block considers affects the complexity of the
computation. Therefore, the nearest-neighbor interpolation is the
most computationally efficient. However, because the accuracy of the
method is proportional to the number of pixels considered, the bicubic
method is the most accurate. For more information, see “Geometric
Transformation Interpolation Methods” in the Video and Image
Processing Blockset User’s Guide.

If, for the Shear values source parameter, you select Input port, the
S port appears on the block. At each time step, the input to the S port
must be a two-element vector that represents the number of pixels by
which to shift your first and last rows or columns.

If, for the Output size after shear parameter, you select Full, and
for the Shear values source parameter, you select Input port, the
Maximum shear value parameter appears in the dialog box. Use this
parameter to enter a real, scalar value that represents the maximum
number of pixels by which to shear your image. The block uses this
parameter to determine the size of the output matrix. If any input to
the S port is greater than the absolute value of the Maximum shear
value parameter, the block saturates to the maximum value.

Fixed-Point Data Types

The following diagram shows the data types used in the Shear block for
bilinear interpolation of fixed-point signals.

2-600

Shear

You can set the product output, accumulator, and output data types
in the block mask.

2-601

Shear

Dialog
Box

The Main pane of the Shear dialog box appears as shown in the
following figure.

2-602

Shear

Shear direction
Specify whether you want to shift the rows or columns of the
input image. Select Horizontal to linearly increase the offset of
the rows. Select Vertical to steadily increase the offset of the
columns.

Output size after shear
Specify the size of the sheared image. If you select Full, the
block outputs a matrix that contains the sheared image values.
If you select Same as input image, the block outputs a matrix
that is the same size as the input image and contains a portion of
the sheared image.

Shear values source
Specify how to enter your shear parameters. If you select
Specify via dialog, the Row/column shear values [first
last] parameter appears in the dialog box. If you select Input
port, port S appears on the block. The block uses the input to this
port at each time step as your shear value.

Row/column shear values [first last]
Enter a two-element vector that represents the number of pixels
by which to shift your first and last rows or columns. This
parameter is visible if, for the Shear values source parameter,
you select Specify via dialog.

Maximum shear value
Enter a real, scalar value that represents the maximum number of
pixels by which to shear your image. This parameter is visible if,
for the Output size after shear parameter, you select Full and,
for the Shear values source parameter, you select Input port.

Background fill value
Specify a value for the pixels that are outside the image.

Interpolation method
Specify which interpolation method the block uses to shear the
image. If you select Nearest neighbor, the block uses the value
of one nearby pixel for the new pixel value. If you select Bilinear,
the new pixel value is the weighted average of the two nearest

2-603

Shear

pixel values. If you select Bicubic, the new pixel value is the
weighted average of the four nearest pixel values.

The Data Types pane of the Shear dialog box appears as shown in
the following figure.

2-604

Shear

2-605

Shear

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

Shear values
Choose how to specify the word length and the fraction length of
the shear values.

• When you select Same word length as input, the word length
of the shear values match that of the input to the block. In this
mode, the fraction length of the shear values is automatically
set to the binary-point only scaling that provides you with the
best precision possible given the value and word length of the
shear values.

• When you select Specify word length, you can enter the word
length of the shear values, in bits. The block automatically sets
the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the shear values, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the shear values. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

This parameter is visible if, for the Shear values source
parameter, you select Specify via dialog.

2-606

Shear

Product output

As depicted in the previous figure, the output of the multiplier is
placed into the product output data type and scaling. Use this
parameter to specify how to designate this product output word
and fraction lengths.

• When you select Same as first input, these characteristics
match those of the first input to the block at the I port.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Accumulator

2-607

Shear

As depicted in the previous figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as first input, these characteristics
match those of the first input to the block at the I port.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as first input, these characteristics
match those of the first input to the block at the I port.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

2-608

Shear

References [1] Wolberg, George. Digital Image Warping. Washington: IEEE
Computer Society Press, 1990.

See Also Resize Video and Image Processing Blockset
software

Rotate Video and Image Processing Blockset
software

Translate Video and Image Processing Blockset
software

2-609

Standard Deviation

Purpose Find standard deviation of each input matrix

Library Statistics

Description The Standard Deviation block is a Signal Processing Blockset block. For
more information, see the Standard Deviation block reference page in
the Signal Processing Blockset software documentation.

2-610

Template Matching

Purpose Locate a template in an image

Library Analysis & Enhancement

Description

The Template Matching block finds the best match of a template within
an input image. The block computes match metric values by shifting a
template over a region of interest or the entire image, and then finds
the best match location.

Algorithm The match metrics use a difference equation with general form:

d x y x yp i i
p p

i

n
(,) ()= −

=
∑

1

1

ln
p denotes the metric space (,)R dn

p for Rn n > 1.

• Sum of Absolute Differences (SAD)
This metric is also known as the Taxicab or Manhattan Distance
metric. It sums the absolute values of the differences between pixels
in the original image and the corresponding pixels in the template

image. This metric is the l1 norm of the difference image. The lowest
SAD score estimates the best position of template within the search
image. The general SAD distance metric becomes:

d I T I Tj i j i
i

n

1
1

(,) ,= −
=
∑

• Sum of Squared Differences (SSD)
This metric is also known as the Euclidean Distance metric. It sums

2-611

Template Matching

the square of the absolute differences between pixels in the original
image and the corresponding pixels in the template image. This

metric is the square of the l2 norm of the difference image. The
general SSD distance metric becomes:

d I T I Tj i j i
i

n

2
2

1
(,) ,= −

=
∑

• Maximum Absolute Difference (MaxAD)
This metric is also known as the Uniform Distance metric. It sums
the maximum of absolute values of the differences between pixels
in the original image and the corresponding pixels in the template

image. This distance metric provides the l∞ norm of the difference
image. The general MaxAD distance metric becomes:

d I T I Tj
x

i j i
p

i

n

∞
→∞ =

= −∑(,) lim ,
1

which simplifies to:

d I T I Tj
i

n
i j i

p
∞ = −(,) max ,

2-612

Template Matching

Main
Dialog
Box

The Main pane of the Template Matching block appears as shown in
the following figure.

Match metric

Select one of three types of match metrics:

2-613

Template Matching

• Sum of absolute differences (SAD)

• Sum of squared differences (SSD)

• Maximum absolute difference (MaxAD)

Output

Select one of two output types:

• Metric matrix
Select this option to output the match metric matrix. This option
adds the Metric output port to the block.

• Best match location
Select this option to output the location index of the best match. This
option adds the Loc output port to the block. When you select Best
match location, the Search method, Output NxN matrix of
metric values around best match, and Enable ROI processing
parameter options appear.

Search method
This option appears when you select Best match location for the
Output parameter. Select one of two search methods.

• Exhaustive

• Three-step

Output NxN matrix of metric values around best match
This option appears when you select Best match location for the
Output parameter. Select the check box to output a matrix of metric
values centered around the best match. When you do so, the block adds
the NMetric and NValid output ports.

N
This option appears when you select the Output NxN matrix of
metric values around best match check box. Enter an integer
number that determines the size of the N-by-N output matrix centered
around the best match location index. N must be an odd number.

2-614

Template Matching

Enable ROI processing
This option appears when you select Best match location for the
Output parameter. Select the check box for the Template Matching
block to perform region of interest processing. When you do so, the
block adds the ROI input port and the Output flag indicating if ROI
is valid check box appears.

Output flag indicating if ROI is valid
This option appears when you select the Enable ROI processing
check box. Select the check box for the Template Matching block
to indicate whether the ROI is within the valid region of the image
boundary. When you do so, the block adds the ROIValid output port.

2-615

Template Matching

Data
Types
Dialog
Box

The Data Types pane of the Template Matching block dialog box
appears as shown in the following figure.

Rounding mode

Select the rounding mode for fixed-point operations.

2-616

Template Matching

Overflow mode

Select the overflow mode for fixed-point operations.

• Wrap

• Saturate

Product output

• Use this parameter to specify how to designate the product output
word and fraction lengths. Refer to “Multiplication Data Types”
in the Signal Processing Blockset documentation for illustrations
depicting the use of the product output data type in this block:

- When you select Same as input, these characteristics match those
of the input to the block.

- When you select Binary point scaling, you can enter the word
length and the fraction length of the product output, in bits.

- When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. This
block requires power-of-two slope and a bias of zero.

Accumulator

Use this parameter to specify how you would like to designate the
accumulator word and fraction lengths.

• When you select Same as product output the characteristics match
the characteristics of the product output. See “Multiplication Data
Types” for illustrations depicting the use of the accumulator data
type in this block:

When you select Binary point scaling, you can enter the Word
length and the Fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the Word
length, in bits, and the Slope of the Accumulator. All signals in
the Video and Image Processing Blockset software have a bias of 0.

2-617

Template Matching

The block casts inputs to the Accumulator to the accumulator data
type. It adds each element of the input to the output of the adder,
which remains in the accumulator data type. Use this parameter to
specify how to designate this accumulator word and fraction lengths.

Output

Choose how to specify the Word length, Fraction length and Slope
of the Template Matching output:

• When you select Same as first input, these characteristics match
the characteristics of the accumulator.

• When you select Binary point scaling, you can enter the Word
length and Fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the Word
length, in bits, and the Slope of the output. All signals in the Video
and Image Processing Blockset software have a bias of 0.

The Output parameter on the Data Types pane appears when you
select Metric matrix or if you select Best match location and the
Output NxN matrix of metric values around best match check
box is selected.

Lock data type settings against change by the fixed-point
tools

Select this parameter to prevent the fixed-point tools from overriding
the data types you specify on the block mask. For more information,
see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink
documentation.

2-618

Template Matching

Supported
Data
Types

Port Supported Data Types

I (Input Image) • Double-precision floating point

• Single-precision floating point

• Fixed point (signed, unsigned or both)

• Boolean

• 8-, 16-, and 32-bit signed integers

• 8-, 16-, and 32-bit unsigned integers

T (Template) • Double-precision floating point

• Single-precision floating point

• Fixed point (signed, unsigned or both)

• Boolean

• 8-bit unsigned integers

2-619

Template Matching

Port Supported Data Types

ROI (Region of
Interest)

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed, unsigned or both)

• Boolean

• 8-bit unsigned integers

Metric (Match
Metric Values)

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed, unsigned or both)

• Boolean

• 32-bit unsigned integers

Loc (Best
match location
[x,y])

• 32-bit unsigned integers

NMetric
(Metric
values in
Neighborhood
of best match)

• Double-precision floating point

• Single-precision floating point

• Fixed point (signed, unsigned or both)

• Boolean

• 8-bit unsigned integers

2-620

Template Matching

Port Supported Data Types

NValid
(Neighborhood
valid)

• Boolean

ROIValid (ROI
valid)

• Boolean

Reference [1] Koga T., et. Al. Motion-compensated interframe coding for video
conferencing. In National Telecommunications Conference. Nov. 1981,
G5.3.1–5, New Orleans, LA.

[2] Zakai M., “General distance criteria” IEEE Transaction on
Information Theory, pp. 94–95, January 1964.

[3] Yu, J., J. Amores, N. Sebe, Q. Tian, "A New Study on Distance
Metrics as Similarity Measurement" IEEE International Conference
on Multimedia and Expo, 2006 .

See Also “Template Matching”

Video Stabilization

Video and Image Processing Blockset Demos

2-621

To Multimedia File

Purpose Write video frames and audio samples to multimedia file

Library Sinks

Description The To Multimedia File block is a Signal Processing Blockset block. For
more information, see the To Multimedia File block reference page in
the Signal Processing Blockset software documentation.

2-622

To Video Display

Purpose Display video data

Library Sinks

Description

The To Video Display block sends video data to your computer screen.

Note This block supports code generation and is only available on
Windows platforms that have file I/O available. This excludes RTWin
(Real-Time Windows Target). This block performs best on platforms
with DirectX Version 9.0 or later and Windows Media Version 9.0 or
later.

Input Description

Image M-by-N matrix of intensity values or an M-by-N-by-3 color video
signal

R, G, B Matrix that represents one plane of the RGB video stream. Inputs to
the R, G, or B ports must have the same dimensions and data type.

For the block to display video data properly, double- and single-precision
floating-point pixel values must be from 0 to 1. For any other data type,
the pixel values must be between the minimum and maximum values
supported by their data type.

Select Full-screen to display your video stream in a full-screen window.
Use the Esc key to exit or to return to other applications, hold down

2-623

To Video Display

the Alt key and press the Tab key. The display window will revert to
previous size if other blocks open additional display windows.

Window size and position
Size and position of the display window is saved when the model is
saved. Any changes while working with the model should be saved again
in order that these preferences are maintained when the model runs.

Host or external monitor visibility

When running a model that contains a To Video Display block, the
output of the block might be visible on the host monitor but not the
external monitor or vice versa. There are two ways to work around
this problem:

1 Replace the To Video Display block with a Video Viewer block.
or

2 Disable the DirectDraw Acceleration, Direct3D Acceleration, and
AGP Texture Acceleration on your system.

a Start > Run.

b For the Open parameter, type dxdiag. Click OK. The DirectX
Diagnostic Tool opens.

c On the Display tab, click the Disable buttons that are next to
DirectDraw Acceleration, Direct3D Acceleration, and AGP Texture
Acceleration.

d Click Exit.

2-624

To Video Display

Menu
Options

The To Video Display appears as shown in the following figure.

Rapid Accelerator mode

If your model is set to run in Rapid Accelerator mode, the menu options
will not be available. In particular, if Open at Start of Simulation is
unchecked, the block will not be included during the run, and therefore
the video display will not be visible. For Rapid Accelerator mode, menu
preferences are saved only when the model is compiled. To change any
of the menu options, change the model to run in Normal mode, and
re-save it. You can then run in Rapid Accelerator mode with the new
preferences.

2-625

To Video Display

Full-screen

Select Full-screen mode to display your video stream in a full
screen window.

Open at Start of Simulation
Select Open at Start of Simulation from the View menu for
the display window to appear while running the model. If this is
not selected, double click the block to display the window.

Image signal
Select the Image signal from the Settings menu to specify
how the block accepts a color video signal. If you select One
multidimensional signal, the block accepts an M-by-N-by-3
color video signal at one port. If you select Separate color
signals, additional ports appear on the block. Each port accepts
one M-by-N plane of an RGB video stream.

Preferences
Select Preferences from the Settings menu to view or modify
Video and Image Processing Blockset Preferences

2-626

To Video Display

Help
The Help menu provides direct links to the To Video Display
reference help, Video and Image Processing Blockset reference
help, and version information.

Supported
Data
Types

Port Supported Data Types

Image • Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16, and 32-bit signed integer

• 8-, 16, and 32-bit unsigned integer

R, G, B Same as Image port

See Also Frame Rate Display Video and Image Processing Blockset
software

From Multimedia File Video and Image Processing Blockset
software

To Multimedia File Signal Processing Blockset software

Video To Workspace Video and Image Processing Blockset
software

Video Viewer Video and Image Processing Blockset
software

2-627

Top-hat

Purpose Perform top-hat filtering on intensity or binary images

Library Morphological Operations

Description The Top-hat block performs top-hat filtering on an intensity or binary
image using a predefined neighborhood or structuring element. Top-hat
filtering is the equivalent of subtracting the result of performing a
morphological opening operation on the input image from the input
image itself. This block uses flat structuring elements only.

Port Input/Output Supported Data Types
Complex
Values
Supported

I Vector or matrix of intensity
values

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

• Boolean

• 8-, 16-, and 32-bit signed
integer

• 8-, 16-, and 32-bit unsigned
integer

No

Nhood Matrix or vector of 1s and 0s that
represents the neighborhood
values

Boolean No

Output Scalar, vector, or matrix that
represents the filtered image

Same as I port No

If your input image is a binary image, for the Input image type
parameter, select Binary. If your input image is an intensity image,
select Intensity.

2-628

Top-hat

Use the Neighborhood or structuring element source parameter to
specify how to enter your neighborhood or structuring element values.
If you select Specify via dialog, the Neighborhood or structuring
element parameter appears in the dialog box. If you select Input
port, the Nhood port appears on the block. Use this port to enter your
neighborhood values as a matrix or vector of 1s and 0s. Choose your
structuring element so that it matches the shapes you want to remove
from your image. You can only specify a it using the dialog box.

Use the Neighborhood or structuring element parameter to
define the region the block moves throughout the image. Specify a
neighborhood by entering a matrix or vector of 1s and 0s. Specify a
structuring element with the strel function from the Image Processing
Toolbox. If the structuring element is decomposable into smaller
elements, the block executes at higher speeds due to the use of a more
efficient algorithm.

2-629

Top-hat

Dialog
Box

The Top-hat dialog box appears as shown in the following figure.

Input image type
If your input image is a binary image, select Binary. If your input
image is an intensity image, select Intensity.

Neighborhood or structuring element source
Specify how to enter your neighborhood or structuring element
values. Select Specify via dialog to enter the values in the
dialog box. Select Input port to use the Nhood port to specify the
neighborhood values. You can only specify a structuring element
using the dialog box.

Neighborhood or structuring element
If you are specifying a neighborhood, this parameter must be a
matrix or vector of 1s and 0s. If you are specifying a structuring
element, use the strel function from the Image Processing
Toolbox. This parameter is visible if, for the Neighborhood or

2-630

Top-hat

structuring element source parameter, you select Specify
via dialog.

See Also Bottom-hat Video and Image Processing Blockset software

Closing Video and Image Processing Blockset software

Dilation Video and Image Processing Blockset software

Erosion Video and Image Processing Blockset software

Label Video and Image Processing Blockset software

Opening Video and Image Processing Blockset software

imtophat Image Processing Toolbox software

strel Image Processing Toolbox software

2-631

Trace Boundaries

Purpose Trace object boundaries in binary images

Library Analysis & Enhancement

Description

The Trace Boundaries block traces object boundaries in binary images,
where nonzero pixels represent objects and 0 pixels represent the
background.

Port Input/Output Supported Data Types
Complex
Values
Supported

BW Vector or matrix that
represents a binary
image

Boolean No

Start
Pts

2-by-N matrix where
each column represents
the zero-based row and
column coordinates of the
boundary starting point,
and N is the total number
of starting points:

r r r
c c c

N

N

1 2

1 2

�
�

⎡

⎣
⎢

⎤

⎦
⎥

• Double-precision floating point

• Single-precision floating point

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

No

2-632

Trace Boundaries

Port Input/Output Supported Data Types
Complex
Values
Supported

Pts 2M-by-N matrix where
each column contains
the zero-based row and
column coordinates of
the boundary pixels, M
is the maximum number
of boundary pixels, and
N is the total number of
starting points:

r r
c c
r r
c c

r r
c c

N

N

N

N

M NM

M NM

11 1

11 1

12 2

12 2

1

1

�
�
�
�

� � �
�
�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

Same as Start Pts port No

Count 1-by-N vector where
each element represents
the actual number of
boundary pixels found
for the corresponding
starting point, where N
is the number of starting
points.

32-bit unsigned integer No

Use the Connectivity parameter to define which pixels are connected
to each other. If you want a pixel to be connected to the other pixels
located on the top, bottom, left, and right, select 4. If you want a pixel
to be connected to the other pixels on the top, bottom, left, right, and

2-633

Trace Boundaries

diagonally, select 8. For more information about this parameter, see the
Label block reference page.

Use the Initial search direction parameter to specify the first
direction in which to look to find the next boundary pixel that is
connected to the starting pixel. If, for the Connectivity parameter, you
select 4, the following figure illustrates the four possible initial search
directions:

/���

+���:

0���:

J���

If, for the Connectivity parameter, you select 8, the following figure
illustrates the eight possible initial search directions:

+���:����

/���

+���:

0���:

J���

0���:����0���:$���

+���:$���

Use the Trace direction parameter to specify the direction in which to
trace the boundary. Your choices are Clockwise or Counterclockwise.

Use theMaximum number of boundary pixels parameter to specify
the maximum number of boundary pixels for each starting point. The
block uses this value to preallocate the number of rows of the Pts port
output matrix so that it can hold all the boundary pixel location values.

2-634

Trace Boundaries

To output the actual number of boundary pixels for each starting point,
select the Output number of boundary pixels found check box. The
Count port appears on the block. The block outputs a 1-by-N vector at
this port where each element represents the actual number of boundary
pixels found for each starting point. Here, N is the number of starting
points.

Because you specify the number of rows of the Pts port output matrix
using the Maximum number of boundary pixels parameter, use
the Action to take for empty output points parameter to specify
what happens to the empty elements in this vector when the number
of boundary pixels is less than the maximum.

• If you select None, the block takes no action. So, any element that
does not contain a boundary pixel location will not have a meaningful
value.

• If you select Fill with last point found, the block fills the
remaining elements with the position of the last boundary pixel.

• If you select Fill with user-defined values, the Fill values
parameter appears on the block.

For the Fill values parameter, enter a scalar value or two-element
vector that you want the block to use to fill in the empty elements.

2-635

Trace Boundaries

Dialog
Box

The Trace Boundaries dialog box appears as shown in the following
figure.

Connectivity
Specify which pixels are connected to each other. If you want a
pixel to be connected to the pixels on the top, bottom, left, and
right, select 4. If you want a pixel to be connected to the pixels on
the top, bottom, left, right, and diagonally, select 8.

Initial search direction
Specify the first direction in which to look to find the next
boundary pixel that is connected to the starting pixel.

Trace direction
Specify the direction in which to trace the boundary. Your choices
are Clockwise or Counterclockwise.

2-636

Trace Boundaries

Maximum number of boundary pixels
Specify the maximum number of boundary pixels. The block uses
this value to preallocate the number of rows of the Pts port output
matrix so that it can hold all the boundary pixel location values.

Output number of boundary pixels found
If you select this check box, the block outputs a vector at the
Count port where each element represents the actual number of
boundary pixels found for each starting point.

Action to take for empty output points
Specify how to fill the empty spaces in the Pts port output matrix.
If you select None, the block takes no action. So, any element
that does not contain a boundary pixel location will not have a
meaningful value. If you select Fill with last point found,
the block fills the remaining elements with the position of the last
boundary pixel. If you select Fill with user-defined values,
the Fill values parameter appears on the block.

Fill values
Enter a scalar value or two-element vector that you want the block
to use to fill in the remaining empty elements. This parameter
is visible if, for the Action to take for empty output points
parameter, you select Fill with user-defined values.

See Also Edge Detection Video and Image Processing Blockset
software

Label Video and Image Processing Blockset
software

bwboundaries Image Processing Toolbox software

bwtraceboundary Image Processing Toolbox software

2-637

Translate

Purpose Translate image in 2-D plane using displacement vector

Library Geometric Transformations

vipgeotforms

Description Use the Translate block to move an image in a two-dimensional plane
using a displacement vector, a two-element vector that represents the
number of pixels by which you want to translate your image. The block
outputs the image produced as the result of the translation.

Note This block supports intensity and color images on its ports.

Port Input/Output Supported Data Types
Complex
Values
Supported

Image /
Input

M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

• Double-precision floating
point

• Single-precision floating
point

• Fixed point

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned
integer

No

Offset Vector of values that represent
the number of pixels by which to
translate the image

Same as I port No

Output Translated image Same as I port No

The input to the Offset port must be the same data type as the input
to the Image port. The output is the same data type as the input to
the Image port.

2-638

Translate

Use the Output size after translation parameter to specify the
size of the translated image. If you select Full, the block outputs a
matrix that contains the entire translated image. If you select Same as
input image, the block outputs a matrix that is the same size as the
input image and contains a portion of the translated image. Use the
Background fill value parameter to specify the pixel values outside
the image.

Use the Translation values source parameter to specify how to
enter your displacement vector. If you select Specify via dialog,
the Offset parameter appears in the dialog box. Use it to enter your
displacement vector, a two-element vector, [r c], of real, integer values
that represent the number of pixels by which you want to translate your
image. The r value represents how many pixels up or down to shift
your image. The c value represents how many pixels left or right to
shift your image. The axis origin is the top-left corner of your image.
For example, if you enter [2.5 3.2], the block moves the image 2.5
pixels downward and 3.2 pixels to the right of its original location.
When the displacement vector contains fractional values, the block uses
interpolation to compute the output.

Use the Interpolation method parameter to specify which
interpolation method the block uses to translate the image. If you
translate your image in either the horizontal or vertical direction and
you select Nearest neighbor, the block uses the value of the nearest
pixel for the new pixel value. If you translate your image in either the
horizontal or vertical direction and you select Bilinear, the new pixel
value is the weighted average of the four nearest pixel values. If you
translate your image in either the horizontal or vertical direction and
you select Bicubic, the new pixel value is the weighted average of the
sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of the
computation. Therefore, the nearest-neighbor interpolation is the
most computationally efficient. However, because the accuracy of the
method is roughly proportional to the number of pixels considered,
the bicubic method is the most accurate. For more information, see

2-639

Translate

“Geometric Transformation Interpolation Methods” in the Video and
Image Processing Blockset User’s Guide.

If, for the Output size after translation parameter, you select Full,
and for the Translation values source parameter, you select Input
port, the Maximum offset parameter appears in the dialog box. Use
theMaximum offset parameter to enter a two-element vector of real,
scalar values that represent the maximum number of pixels by which
you want to translate your image. The block uses this parameter to
determine the size of the output matrix. If the input to the Offset port
is greater than the Maximum offset parameter values, the block
saturates to the maximum values.

If, for the Translation values source parameter, you select Input
port, the Offset port appears on the block. At each time step, the input
to the Offset port must be a vector of real, scalar values that represent
the number of pixels by which to translate your image.

Fixed-Point Data Types

The following diagram shows the data types used in the Translate block
for bilinear interpolation of fixed-point signals.

2-640

Translate

You can set the product output, accumulator, and output data types in
the block mask as discussed in the next section.

2-641

Translate

Dialog
Box

The Main pane of the Translate dialog box appears as shown in the
following figure.

2-642

Translate

Output size after translation
If you select Full, the block outputs a matrix that contains the
translated image values. If you select Same as input image, the
block outputs a matrix that is the same size as the input image
and contains a portion of the translated image.

Translation values source
Specify how to enter your translation parameters. If you select
Specify via dialog, the Offset parameter appears in the dialog
box. If you select Input port, port O appears on the block.
The block uses the input to this port at each time step as your
translation values.

Offset
Enter a vector of real, scalar values that represent the number
of pixels by which to translate your image.

Background fill value
Specify a value for the pixels that are outside the image.

Interpolation method
Specify which interpolation method the block uses to translate the
image. If you select Nearest neighbor, the block uses the value
of one nearby pixel for the new pixel value. If you select Bilinear,
the new pixel value is the weighted average of the four nearest
pixel values. If you select Bicubic, the new pixel value is the
weighted average of the sixteen nearest pixel values.

Maximum offset
Enter a vector of real, scalar values that represent the maximum
number of pixels by which you want to translate your image. This
parameter must have the same data type as the input to the
Offset port. This parameter is visible if, for the Output size after
translation parameter, you select Full and, for the Translation
values source parameter, you select Input port.

The Data Types pane of the Translate dialog box appears as shown in
the following figure.

2-643

Translate

Rounding mode
Select the rounding mode for fixed-point operations.

Overflow mode
Select the overflow mode for fixed-point operations.

2-644

Translate

Offset values
Choose how to specify the word length and the fraction length of
the offset values.

• When you select Same word length as input, the word length
of the offset values match that of the input to the block. In this
mode, the fraction length of the offset values is automatically
set to the binary-point only scaling that provides you with the
best precision possible given the value and word length of the
offset values.

• When you select Specify word length, you can enter the word
length of the offset values, in bits. The block automatically sets
the fraction length to give you the best precision.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the offset values, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the offset values. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

This parameter is visible if, for the Translation values source
parameter, you select Specify via dialog.

Product output

As depicted in the previous figure, the output of the multiplier is
placed into the product output data type and scaling. Use this

2-645

Translate

parameter to specify how to designate this product output word
and fraction lengths.

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the product output, in
bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the product output. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Accumulator

As depicted in the previous figure, inputs to the accumulator
are cast to the accumulator data type. The output of the adder
remains in the accumulator data type as each element of the input
is added to it. Use this parameter to specify how to designate this
accumulator word and fraction lengths.

• When you select Same as product output, these
characteristics match those of the product output.

• When you select Same as first input, these characteristics
match those of the first input to the block.

2-646

Translate

• When you select Binary point scaling, you can enter the
word length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the accumulator. The
bias of all signals in the Video and Image Processing Blockset
blocks is 0.

Output
Choose how to specify the word length and fraction length of the
output of the block:

• When you select Same as first input, these characteristics
match those of the first input to the block.

• When you select Binary point scaling, you can enter the
word length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you can enter the
word length, in bits, and the slope of the output. The bias of all
signals in the Video and Image Processing Blockset blocks is 0.

Lock data type settings against change by the fixed-point tools
Select this parameter to prevent the fixed-point tools from
overriding the data types you specify on the block mask. For more
information, see fxptdlg, a reference page on the Fixed-Point
Tool in the Simulink documentation.

References [1] Wolberg, George. Digital Image Warping. Washington: IEEE
Computer Society Press, 1990.

See Also Resize Video and Image Processing Blockset software

Rotate Video and Image Processing Blockset software

Shear Video and Image Processing Blockset software

2-647

Variable Selector

Purpose Specify subset of rows or columns from input

Library Utilities

Description The Variable Selector block is a Signal Processing Blockset block. For
more information, see the Variable Selector block reference page in the
Signal Processing Blockset software documentation.

2-648

Variance

Purpose Compute variance of input or sequence of inputs

Library Statistics

Description The Variance block is a Signal Processing Blockset block. For more
information, see the Variance block reference page in the Signal
Processing Blockset software documentation.

2-649

Video From Workspace

Purpose Import video signal from MATLAB workspace

Library Sources

vipsrcs

Description

The Video From Workspace block imports a video signal from the
MATLAB workspace. If the video signal is a M-by-N-by-T workspace
array, the block outputs an intensity video signal, where M and N
are the number of rows and columns in a single video frame, and T
is the number of frames in the video signal. If the video signal is a
M-by-N-by-C-by-T workspace array, the block outputs a color video
signal, where M and N are the number of rows and columns in a single
video frame, C is the number of color channels, and T is the number of
frames in the video stream. In addition to the video signals previously
described, this block supports fi objects and variables that are in the
structure format returned by the MATLAB mmreader function.

Note If you generate code from a model that contains this block,
Real-Time Workshop takes a long time to compile the code because it
puts all of the video data into the .c file. Before you generate code,
you should convert your video data to a format supported by the From
Multimedia File block or the Read Binary File block.

2-650

Video From Workspace

Port Output Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

R, G, B Scalar, vector, or matrix that
represents one plane of the RGB
video stream. Outputs from the
R, G, or B ports have the same
dimensions.

Same as I port No

For the Video and Image Processing Blockset blocks to display video
data properly, double- and single-precision floating-point pixel values
must be from 0 to 1. This block does not scale pixel values.

Use the Signal parameter to specify the MATLAB workspace variable
from which to read. For example, to read an AVI file, use the following
syntax:

mov = mmreader('filename.avi')

The mmreader function reads the AVI file into the MATLAB movie
structure mov. The MATLAB movie structure might be obsoleted in the
future. For more information, see mmreader class in the MATLAB
documentation.

If filename.avi has a colormap associated with it, the AVI file must
satisfy the following conditions or the block produces an error:

2-651

Video From Workspace

• The colormap must be empty or have 256 values.

• The data must represent an intensity image.

• The data type of the image values must be uint8.

Use the Sample time parameter to set the sample period of the output
signal.

When the block has output all of the available signal samples, it can
start again at the beginning of the signal, repeat the final value, or
generate 0s until the end of the simulation. The Form output after
final value by parameter controls this behavior:

• When you specify Setting To Zero, the block generates zero-valued
outputs for the duration of the simulation after generating the last
frame of the signal.

• When you specify Holding Final Value, the block repeats the final
frame for the duration of the simulation after generating the last
frame of the signal.

• When you specify Cyclic Repetition, the block repeats the signal
from the beginning after it reaches the last frame in the signal.

Use the Image signal parameter to specify how the block outputs a
color video signal. If you select One multidimensional signal, the
block outputs an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port outputs one M-by-N
plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use
the spacer character, |, as the delimiter. This parameter is available
when the Image signal parameter is set to Separate color signals.

2-652

Video From Workspace

Dialog
Box

The Video From Workspace dialog box appears as shown in the
following figure.

2-653

Video From Workspace

Signal
Specify the MATLAB workspace variable that contains the video
signal, or use the mmreader function to specify an AVI filename.

Sample time
Enter the sample period of the output.

Form output after final value by
Specify the output of the block after all of the specified signal
samples have been generated. The block can output zeros for the
duration of the simulation (Setting to zero), repeat the final
value (Holding Final Value) or repeat the entire signal from the
beginning (Cyclic Repetition).

Image signal
Specify how the block outputs a color video signal. If you select One
multidimensional signal, the block outputs an M-by-N-by-P
color video signal, where P is the number of color planes, at one
port. If you select Separate color signals, additional ports
appear on the block. Each port outputs one M-by-N plane of an
RGB video stream.

Output port labels
Enter the labels for your output ports using the spacer character,
|, as the delimiter. This parameter is available when the Image
signal parameter is set to Separate color signals.

See Also From Multimedia
File

Video and Image Processing Blockset software

Image From
Workspace

Video and Image Processing Blockset software

Read Binary File Video and Image Processing Blockset software

To Video Display Video and Image Processing Blockset software

Video Viewer Video and Image Processing Blockset software

2-654

Video To Workspace

Purpose Export video signal to MATLAB workspace

Library Sinks

Description The Video To Workspace block exports a video signal to the MATLAB
workspace. If the video signal is represented by intensity values, it
appears in the workspace as a three-dimensional M-by-N-by-T array,
where M and N are the number of rows and columns in a single video
frame, and T is the number of frames in the video signal. If it is a
color video signal, it appears in the workspace as a four-dimensional
M-by-N-by-C-by-T array, where M and N are the number of rows and
columns in a single video frame, C is the number of inputs to the
block, and T is the number of frames in the video stream. During code
generation, Real-Time Workshop does not generate code for this block.

Note This block supports intensity and color images on its ports.

Port Input Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of intensity
values or an M-by-N-by-P color
video signal where P is the
number of color planes

• Double-precision floating point

• Single-precision floating point

• Fixed point

• Boolean

• 8-, 16-, 32-bit signed integer

• 8-, 16-, 32-bit unsigned integer

No

R, G,
B

Scalar, vector, or matrix that
represents one plane of the
RGB video stream. Outputs

Same as I port No

2-655

Video To Workspace

Port Input Supported Data Types
Complex
Values
Supported

from the R, G, or B ports have
the same dimensions.

Use the Variable name parameter to specify the MATLAB workspace
variable to which to write the video signal.

Use the Number of inputs parameter to determine the number of
inputs to the block. If the video signal is represented by intensity
values, enter 1. If it is a color (R, G, B) video signal, enter 3.

Use the Limit data points to last parameter to determine the number
of video frames, T, you want to export to the MATLAB workspace.

If you want to downsample your video signal, use the Decimation
parameter to enter your decimation factor.

If your video signal is fixed point and you select the Log fixed-point
data as a fi object check box, the block creates a fi object in the
MATLAB workspace.

Use the Input port labels parameter to label your input ports. Use
the spacer character, |, as the delimiter. This parameter is available if
the Number of inputs parameter is greater than 1.

2-656

Video To Workspace

Dialog
Box

The Video To Workspace dialog box appears as shown in the following
figure.

Variable name
Specify the MATLAB workspace variable to which to write the
video signal.

Number of inputs
Enter the number of inputs to the block. If the video signal is black
and white, enter 1. If it is a color (R, G, B) video signal, enter 3.

Limit data points to last
Enter the number of video frames to export to the MATLAB
workspace.

Decimation
Enter your decimation factor.

2-657

Video To Workspace

Log fixed-point data as a fi object
If your video signal is fixed point and you select this check
box, the block creates a fi object in the MATLAB workspace.
For more information of fi objects, see the Fixed-Point Toolbox
documentation.

Input port labels
Enter the labels for your input ports using the spacer character,
|, as the delimiter. This parameter is available if the Number of
inputs parameter is greater than 1.

See Also Signal To Workspace Signal Processing Blockset
software

To Multimedia File Signal Processing Blockset
software

To Video Display Video and Image Processing
Blockset software

Video Viewer Video and Image Processing
Blockset software

2-658

Video Viewer

Purpose Display binary, intensity, or RGB images or video streams

Library Sinks

Description The Video Viewer block enables you to view a binary, intensity, or
RGB image or a video stream. The block provides simulation controls
for play, pause, and step while running the model. The block also
provides pixel region analysis tools. During code generation, Real-Time
Workshop software does not generate code for this block.

Note The To Video Display block supports code generation.

See the following table for descriptions of both input types.

Input Description

Image M-by-N matrix of intensity values or an
M-by-N-by-P color video signal where P is the
number of color planes.

R/G/B Scalar, vector, or matrix that represents one plane
of the RGB video stream. Inputs to the R, G, or
B ports must have the same dimensions and data
type.

Select File > Image Signal to set the input to either Image or RGB.

2-659

Video Viewer

Dialogs

Toolbar

Toolbar

GUI Menu
Equivalent

Shortcut
Keys and
Accelerators

Description

File >
Export to
Image Tool

Ctrl+E Send the current video frame
to the Image Tool. For more
information, see “Using the
Image Tool to Explore Images”

2-660

Video Viewer

Toolbar (Continued)

GUI Menu
Equivalent

Shortcut
Keys and
Accelerators

Description

in the Image Processing Toolbox
documentation.

Note The Image Tool can only know that the frame is an intensity
image if the colormap of the frame is grayscale (gray(256)).
Otherwise, the Image Tool assumes the frame is an indexed image
and disables the Adjust Contrast button.

Tools >
Video
Information

V View information about the
video data source.

Tools
> Pixel
Region

N/A Open the Pixel Region tool. For
more information about this
tool, see the Image Processing
Toolbox documentation.

Tools >
Zoom In

N/A Zoom in on the video display.

Tools >
Zoom Out

N/A Zoom out of the video display.

Tools > Pan N/A Move the image displayed in the
GUI.

2-661

Video Viewer

Toolbar (Continued)

GUI Menu
Equivalent

Shortcut
Keys and
Accelerators

Description

Tools >
Maintain
Fit to
Window

N/A Scale video to fit GUI size
automatically. Toggle the button
on or off.

N/A N/A Enlarge or shrink the video
frame. This option becomes
available if you do not select the
Maintain Fit to Window.

Playback Toolbar

Playback Toolbar

GUI Menu
Equivalent

Shortcut
Keys and
Accelerators

Description

Playback >
Stop

S Stop the video.

Playback >
Play

P, Space bar Play the video.

Playback >
Pause

P, Space bar Pause the video. This button
appears only when the video is
playing.

Playback
> Step
Forward

Right arrow,
Page Down

Step forward one frame.

2-662

Video Viewer

Playback Toolbar (Continued)

GUI Menu
Equivalent

Shortcut
Keys and
Accelerators

Description

Playback
> Simulink
Snapshot

N/A Click this button to freeze the
display in the viewer window.

Playback >
Highlight
Simulink
Signal

Ctrl+L In the model window, highlight
the Simulink signal the viewer
is displaying.

Setting Viewer Configuration

The Video Viewer Configuration preferences enables you to change the
behavior and appearance of the graphic user interface (GUI) as well as
the behavior of the playback shortcut keys.

• To open the Configuration dialog box, select File > Configuration
Set > Edit.

• To save the configuration settings for future use, select
File > Configuration Set > Save as.

Core Pane

The Core pane in the Viewer Configuration dialog box controls the
GUI’s general settings.

2-663

Video Viewer

General UI
Click General UI, and click the Options button to open the General
UI Options dialog box.

If you select the Display the full source path in the title bar check
box, the GUI displays the model name and full Simulink path to the
video data source in the title bar. Otherwise, it displays a shortened
name.

Use the Open message log: parameter to control when the Message
log window opens. You can use this window to debug issues with video

2-664

Video Viewer

playback. Your choices are for any new messages, for warn/fail
messages, only for fail messages, or manually.

Tools Pane

The Tools pane in the Viewer Configuration dialog box contains the
tools that appear on the Video Viewer GUI. Select the Enabled check
box next to the tool name to specify which tools to include on the GUI.

Image Tool

Click Image Tool, and then click the Options button to open the
Image Tool Options dialog box.

2-665

Video Viewer

Select the Open new Image Tool window for export check box if
you want to send each video frame to a different session of Image Tool.

Pixel Region
Select the Pixel Region check box to display and enable the pixel
region GUI button. For more information on working with pixel regions
see Getting Information about the Pixels in an Image.

Image Navigation Tools
Select the Image Navigation Tools check box to enable the
pan-and-zoom GUI button.

Instrumentation Set
Select the Instrumentation Set check box to enable the option to load
and save viewer settings. The option appears in the File menu.

Video Information

The Video Information dialog box lets you view basic information
about the video. To open this dialog box, you can select Tools > Video

Information , click the information button , or press the V key.

2-666

Video Viewer

Colormap for Intensity Video

The Colormap dialog box lets you change the colormap of an intensity
video. You cannot access the parameters on this dialog box when the
GUI displays an RGB video signal. To open this dialog box for an
intensity signal, select Tools > Colormap or press C.

Use the Colormap parameter to specify the colormap to apply to the
intensity video.

If you know that the pixel values do not use the entire data type range,
you can select the Specify range of displayed pixel values check
box and enter the range for your data. The dialog box automatically
displays the range based on the data type of the pixel values.

Status Bar

A status bar appear along the bottom of the Video Viewer. It displays
information pertaining to the video status (running, paused or ready),
type of video (Intensity or RGB) and video time.

Message Log

The Message Log dialog provides a system level record of configurations
and extensions used. You can filter what messages to display by Type
and Category, view the records, and display record details.

The Type parameter allows you to select either All, Info, Warn, or
Fail message logs. The Category parameter allows you to select either
Configuration or Extension message summaries. The Configuration

2-667

Video Viewer

messages indicate when a new configuration file is loaded. The
Extension messages indicate a component is registered. For example,
you might see a Simulink message, which indicates the component is
registered and available for configuration.

Saving the Settings of Multiple Video Viewer GUIs

The Video Viewer GUI enables you to save and load the settings of
multiple GUI instances. Thus, you only need to configure the Video
Viewer GUIs that are associated with your model once. To save the GUI
settings, select File > Instrumentation Sets > Save Set. To open the
preconfigured GUIs, select File > Instrumentation Sets > Load Set.

Supported
Data
Types

Port Supported Data Types

Image • Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16-, and 32-bit signed integer

• 8-, 16-, and 32-bit unsigned integer

R/G/B Same as Image port

See Also From Multimedia File Video and Image Processing Blockset
software

mplay Video and Image Processing Blockset
software

To Multimedia File Signal Processing Blockset software

2-668

Video Viewer

To Video Display Video and Image Processing Blockset
software

Video To Workspace Video and Image Processing Blockset
software

implay Image Processing Toolbox

2-669

Write AVI File (Obsolete)

Purpose Write video frames to uncompressed AVI file

Library Sinks

Description
Note The Write AVI File block is obsolete. It may be removed in a
future version of the Video and Image Processing Blockset blocks. Use
the replacement block To Multimedia File.

The Write AVI File block writes video frames to an uncompressed AVI
file from a Simulink model. If the data type of the input pixel values
is anything other than 8-bit unsigned integers, the block scales the
values. Then, it writes values between the minimum and maximum
values supported by the 8-bit unsigned integer data type to the AVI file.
This block does not support audio samples. During code generation,
Real-Time Workshop does not generate code for this block.

Port Input Supported Data Types
Complex
Values
Supported

Image M-by-N matrix of
intensity values or an
M-by-N-by-P color video
signal where P is the
number of color planes

• Double-precision floating point

• Single-precision floating point

• Boolean

• 8-, 16- 32-bit signed integer

• 8-, 16- 32-bit unsigned integer

No

R, G, B Matrix that represents
one plane of the RGB
video stream. Inputs
to the R, G, or B ports
must have the same
dimensions.

Same as I port No

2-670

Write AVI File (Obsolete)

Use the File name parameter to specify the name of the AVI file to
which to write. The block creates the AVI file in your current directory.
To specify a different directory, use the Browse button; then enter
the filename.

Use the Image signal parameter to specify how the block accepts a
color video signal. If you select One multidimensional signal, the
block accepts an M-by-N-by-P color video signal, where P is the number
of color planes, at one port. If you select Separate color signals,
additional ports appear on the block. Each port accepts one M-by-N
plane of an RGB video stream.

Dialog
Box

The Write AVI File dialog box appears as shown in the following figure.

File name
Specify the name of the AVI file to which to write.

Image signal
Specify how the block accepts a color video signal. If you select One
multidimensional signal, the block accepts an M-by-N-by-P
color video signal, where P is the number of color planes, at one
port. If you select Separate color signals, additional ports
appear on the block. Each port accepts one M-by-N plane of an
RGB video stream.

2-671

Write AVI File (Obsolete)

See Also To Multimedia File Signal Processing Blockset software

To Video Display Video and Image Processing Blockset
software

Video To Workspace Video and Image Processing Blockset
software

Video Viewer Video and Image Processing Blockset
software

2-672

Write Binary File

Purpose Write binary video data to files

Library Sinks

Description The Write Binary File block takes video data from a Simulink model
and exports it to a binary file.

This block produces a raw binary file with no header information. It
has no encoded information providing the data type, frame rate or
dimensionality. The video data for this block appears in row major
format.

Note This block supports code generation only for platforms that have
file I/O available. You cannot use this block to do code generation with
RTWin (Real-Time Windows Target).

Port Input Supported Data Types
Complex
Values
Supported

Input Matrix that represents the
luma (Y') and chroma (Cb
and Cr) components of a video
stream

• 8-, 16- 32-bit signed integer

• 8-, 16- 32-bit unsigned integer

No

Four Character Code Video Formats

Four Character Codes (FOURCC) identify video formats. For more
information about these codes, see http://www.fourcc.org.

Use the Four character code parameter to identify the video format.

Custom Video Formats

You can use the Write Binary File block to create a binary file that
contains video data in a custom format.

2-673

http://www.fourcc.org

Write Binary File

• Use the Bit stream format parameter to specify whether you want
your data in planar or packed format.

• Use the Number of input components parameter to specify the
number of components in the video stream. This number corresponds
to the number of block input ports.

• Select the Inherit size of components from input data type
check box if you want each component to have the same number of
bits as the input data type. If you clear this check box, you must
specify the number of bits for each component.

• Use the Component parameters to specify the component names.

• Use the Component order in binary file parameter to specify how
to arrange the components in the binary file.

• Select the Interlaced video check box if the video stream represents
interlaced video data.

• Select theWrite signed data to output file check box if your input
data is signed.

• Use the Byte order in binary file parameter to specify whether the
byte ordering in the output binary file is little endian or big endian.

2-674

Write Binary File

Dialog
Box

The Write Binary File dialog box appears as shown in the following
figure.

File name
Specify the name of the binary file. If the location of this file is on
your MATLAB path, enter the filename. If the location of this file
is not on your MATLAB path, use the Browse button to specify
the full path to the file including the filename.

Video format
Specify the format of the binary video data as eitherFour
character codes or Custom. See “Four Character Code Video
Formats” on page 2-673 or “Custom Video Formats” on page 2-673
for more details.

Four character code
From the list, select the binary file format.

Line ordering
Specify how the block fills the binary file. If you select Top line
first, the block first fills the binary file with the first row of the
video frame. It then fills the file with the other rows in increasing
order. If you select Bottom line first, the block first fills the

2-675

Write Binary File

binary file with the last row of the video frame. It then fills the
file with the other rows in decreasing order.

Bit stream format
Specify whether you want your data in planar or packed format.

Number of input components
Specify the number of components in the video stream. This
number corresponds to the number of block input ports.

2-676

Write Binary File

Inherit size of components from input data type
Select this check box if you want each component to have the
same number of bits as the input data type. If you clear this check
box, you must specify the number of bits for each component.

Component
Specify the component names.

Component order in binary file
Specify how to arrange the components in the binary file.

Interlaced video
Select this check box if the video stream represents interlaced
video data.

Write signed data to output file
Select this check box if your input data is signed.

Byte order in binary file
Use this parameter to specify whether the byte ordering in the
output binary file is little endian or big endian.

See Also Read Binary File Video and Image Processing Blockset

To Multimedia File Signal Processing Blockset

2-677

Write Binary File

2-678

3

System Object Reference

• “Analysis & Enhancement” on page 3-2

• “Conversions” on page 3-2

• “Filtering” on page 3-3

• “Geometric Transformations” on page 3-3

• “Morphological Operations” on page 3-4

• “Sinks” on page 3-4

• “Sources” on page 3-5

• “Statistics” on page 3-5

• “Text & Graphics” on page 3-6

• “Transforms” on page 3-6

• “Utilities” on page 3-7

3 System Object Reference

Analysis & Enhancement
video.BlockMatcher Estimate motion between images or

video frames

video.BoundaryTracer Trace object boundaries in binary
images

video.ContrastAdjuster Adjust image contrast by linear
scaling

video.CornerDetector Corner metric matrix and corner
detector

video.Deinterlacer Remove motion artifacts by
deinterlacing input video signal

video.EdgeDetector Find edges of objects in images

video.HistogramEqualizer Enhance contrast of images using
histogram equalization

video.OpticalFlow Estimate object velocities

video.TemplateMatcher Perform template matching by
shifting template over image

Conversions

video.Autothresholder Convert intensity image to binary
image

video.ChromaResampler Downsample or upsample
chrominance components of images

video.ColorSpaceConverter Convert color information between
color spaces

video.DemosaicInterpolator Demosaic Bayer’s format images

video.GammaCorrector Apply or remove gamma correction
from images or video streams

3-2

Filtering

video.ImageComplementer Compute complement of pixel values
in binary, intensity, or RGB images

video.ImageDataTypeConverter Convert and scale input image to
specified output data type

Filtering

isfilterseparable Determine whether filter coefficients
are separable

video.Convolver2D Compute 2-D discrete convolution of
two input matrices

video.ImageFilter Perform 2-D FIR filtering of input
matrix

video.MedianFilter2D 2D median filtering

Geometric Transformations

video.GeometricRotator Rotate image by specified angle

video.GeometricScaler Enlarge or shrink image sizes

video.GeometricTransformer Apply projective or affine
transformation to an image

video.GeometricTransformEstimator Estimate geometric transformation
from matching point pairs

video.GeometricTranslator Translate image in two-dimensional
plane using displacement vector

3-3

3 System Object Reference

Morphological Operations

video.ConnectedComponentLabeler Label and count the connected
regions in a binary image

video.MorphologicalBottomHat Bottom-hat filtering on image

video.MorphologicalClose Perform morphological closing on
image

video.MorphologicalDilate Perform morphological dilation on
an image

video.MorphologicalErode Perform morphological erosion on an
image

video.MorphologicalOpen Perform morphological opening on
an image

video.MorphologicalTopHat Top-hat filtering on image

Sinks
mplay View video from MATLAB

workspace, multimedia file, or
Simulink model

video.BinaryFileWriter Write binary video data to files

video.DeployableVideoPlayer Send video data to computer screen

video.MultimediaFileWriter Write video frames and audio
samples to multimedia file

video.VideoPlayer Play video or display image
sequences

3-4

Sources

Sources
video.BinaryFileReader Read video data from binary files

video.MultimediaFileReader Read video and/or audio samples
from multimedia file

Statistics

video.Autocorrelator2D Compute 2-D autocorrelation of
input matrix

video.BlobAnalysis Compute statistics for connected
regions in a binary image

video.Crosscorrelator2D Compute 2-D cross-correlation of two
input matrices

video.Histogram2D Generate histogram of each input
matrix

video.LocalMaximaFinder Find local maxima in matrices

video.Maximum Find maximum values in input or
sequence of inputs

video.Mean Find mean value of input or sequence
of inputs

video.Median Find median values in an input.

video.Minimum Find minimum values in input or
sequence of inputs

video.PSNR Compute peak signal-to-noise ratio
(PSNR) between images

video.StandardDeviation Find standard deviation of input or
sequence of inputs

video.Variance Find variance values in an input or
sequence of inputs

3-5

3 System Object Reference

Text & Graphics

video.AlphaBlender Combine images, overlay images, or
highlight selected pixels

video.MarkerInserter Draw markers on output image

video.ShapeInserter Draw rectangles, lines, polygons, or
circles on images

video.TextInserter Draw text on image or video stream

Transforms

video.DCT2D Compute 2-D discrete cosine
transform

video.FFT2D Two-dimensional discrete Fourier
transform

video.HoughLines Find Cartesian coordinates of lines
that are described by rho and theta
pairs

video.HoughTransform Find lines in images via Hough
transform

video.IDCT2D Compute 2-D inverse discrete cosine
transform

video.IFFT2D Two–dimensional inverse discrete
Fourier transform

video.Pyramid Perform Gaussian pyramid
decomposition

3-6

Utilities

Utilities
video.ImagePadder Pad or crop input image along its

rows, columns, or both

3-7

3 System Object Reference

3-8

4

Alphabetical List

isfilterseparable

Purpose Determine whether filter coefficients are separable

Syntax S = isfilterseparable(H)
[S, HCOL, HROW] = isfilterseparable(H)

Description S = isfilterseparable(H) takes in the filter kernel H and returns 1
(true) when the filter is separable, and 0 (false) otherwise.

[S, HCOL, HROW] = isfilterseparable(H) uses the filter kernel, H,
to return its vertical coefficients HCOL and horizontal coefficients HROW
when the filter is separable. Otherwise, HCOL and HROW are empty.

Definition Separable two dimensional filters

Separable two-dimensional filters reflect the outer product of two
vectors. Separable filters help reduce the number of calculations
required.

A two-dimensional convolution calculation requires (width*height)
number of multiplications for each output pixel. The general case
equation for a two-dimensional convolution is:

Y m n H k l U m k n l
lk

(,) (,) (,)= − −∑∑
If the filter H is separable then,

H k l H k H lrow col(,) () ()= ∗

Shifting the filter instead of the image, the two-dimensional equation
becomes:

Y m n H m k H n l U m nrow col
lk

(,) () () (,)= − −∑∑
This calculation requires only (width + height) number of multiplications
for each pixel.

4-2

isfilterseparable

Input
Arguments

H

H numeric or logical, 2-D, and nonsparse.

Output
Arguments

HCOL

HCOL is the same data type as input H when H is either single or
double floating point. Otherwise, HCOL becomes double floating
point. If S is true, HCOL is a vector of vertical filter coefficients.
Otherwise, HCOL is empty.

HROW

HROW is the same data type as input H when H is either single or
double floating point. Otherwise, HROW becomes double floating
point. If S is true, HROW is a vector of horizontal filter coefficients.
Otherwise, HROW is empty.

S

S is a logical variable that is true, when the filter is separable,
and false, when it is not.

Examples Determine if the Gaussian filter created using the fspecial function
is separable.

% Create a gaussian filter
two_dimensional_filter = fspecial('gauss');
% Test with isfilterseparable
[isseparable, hcol, hrow] = ...
isfilterseparable(two_dimensional_filter)

When you run this example, notice that hcol*hrow equals the
two_dimensional_filter. This result is expected for a Gaussian filter.

Algorithm The isfilterseparable function uses the singular value decomposition
svd function to determine the rank of the matrix.

See Also 2-D FIR Filter | svd | rank

4-3

isfilterseparable

Related
Links

• MATLAB Central — Separable Convolution

4-4

http://blogs.mathworks.com/steve/2006/10/04/separable-convolution/

mplay

Purpose View video from MATLAB workspace, multimedia file, or Simulink
model

Syntax mplay
mplay('filename.avi')
mplay('filename.avi',FPS)
mplay(A)
mplay(A,FPS)
mplay({line_handles})
mplay({'block',PORT})

Description mplay opens an MPlay GUI that allows you to view video from files or
the MATLAB workspace. The MPlay GUI does not play audio.

mplay('filename.avi') connects the MPlay GUI to the specified AVI
file. You can also view video signals in Simulink models.

mplay('filename.avi',FPS) plays the specified frame rate in frames
per second, (FPS). The FPS value equals that of the frame rate specified
in the file.

mplay(A) connects the MPlay GUI to the variable in the MATLAB
workspace, A.

mplay(A,FPS) plays the specified frame rate in frames per second, FPS.
The FPS value defaults to 20.

mplay({line_handles}) connects the MPlay GUI to one or three
Simulink signal lines to display, where all signals must originate from
the same block.

mplay({'block',PORT}) connects the MPlay GUI to the output signal
of the specified block, 'block', on output port port. All ports on the
specified block are selected if PORT is omitted.

Inputs A

A is a variable in the MATLAB workspace, which must have one
of the following formats:

4-5

mplay

• MATLAB movie structure

• Intensity video. This input is an M-by-N-by-T, or
M-by-N-by-1-by-T array, where the size of each frame isM-by-N
and there are T image frames.

• RGB video array. This input is an M-by-N-by-3-by-T array,
where the size of each RGB image isM-by-N-by-3 and there are
T image frames.

For performance considerations, the video input A data type
converts to uint8 as follows:

Supported Data Types Converted to uint8

double

single

int8

uint8

int16

uint16

int32

uint32

Boolean

Fixed point

block

The block is a full path to a specified Simulink blockset block. To
get the full block path name of the currently selected Simulink
block, issue the command mplay({gcb,1}) on the MATLAB
command line.

filename.avi

Filename.avi is a specified AVI file.

4-6

mplay

FPS

FPS stands for frames per second. You can specify the frame rate
in frames per second.

line_handles

line_handles are Simulink signal lines. To get the handles
to the Simulink signals, line_handles, issue the command
mplay({gsl}) on the MATLAB command line.

port

The port refers to a Simulink block output port number.

Examples Play a video created in MATLAB workspace.

fig=figure; % create a video
set(gca,'xlim',[-80 80],'ylim',[-80 80],'NextPlot', ...
'replace','Visible','off');
x = -pi:.1:pi;
radius = 0:length(x);
video = []; % initialize video variable
for i=length(x):-1:1

patch(sin(x)*radius(i),cos(x)*radius(i), ...
[abs(cos(x(i))) 0 0]);
F = getframe(gca);
video = cat(4,video,F.cdata); % video is MxNx3xT

end
close(fig);
mplay(video); % display a video

Alternatives Access this GUI by selecting Tools > MPlay Video Viewer.

See Also Video Viewer | To Video Display

Tutorials • Video and Image Processing Blockset demos

How To • “Using the MPlay GUI”

4-7

video.AlphaBlender class

Purpose Combine images, overlay images, or highlight selected pixels

Description The AlphaBlender object combines two images, overlays one image over
another, or highlights selected pixels.

Construction H = video.AlphaBlender returns an alpha blending System object, H,
that combines the pixel values of two images, using an opacity factor
of 0.75.

H = video.AlphaBlender(’PropertyName’,PropertyValue,...)
returns an alpha blending object, H, with each specified property set to
the specified value.

Properties Operation

Operation to perform

Specify the operation that the object performs as Blend, Binary
mask, or Highlight selected pixels. If this property is set to
Blend, the object linearly combines the pixels of one image with
another image. If this property is set to Binary mask, the object
overwrites the pixel values of one image with the pixel values of
another image. If this property is set to Highlight selected
pixel, the object uses the binary image input, MASK, to determine
which pixels are set to the maximum value supported by their
data type.

OpacitySource

Source of opacity factor

Specify how to determine the opacity factor(s) as Property or
Input port. This property applies when you set the Operation
property to Blend. The default value of this property is Property.

Opacity

Amount by which the object scales each pixel value before
combining them

4-8

video.AlphaBlender class

Specify the amount by which the object scales each pixel value
before combining them as a scalar value used for all pixels, or
a matrix of values that defines the factor for each pixel. This
property applies when you set the OpacitySource property to
Property. This property is tunable. The default value of this
property is 0.75.

MaskSource

Source of binary mask

Specify how to determine the masking factor(s) as Property or
Input port. This property applies when you set the Operation
property to Binary mask. The default value of this property is
Property.

Mask

Which pixels are overwritten

Specify which pixels are overwritten as a binary scalar 0 or 1 used
for all pixels, or a matrix of 0s and 1s that defines the factor for
each pixel. This property applies when you set the MaskSource
property to Property. This property is tunable. The default value
of this property is 1.

LocationSource

Source of location of the upper-left corner of second input image

Specify how to enter location of the upper-left corner of second
input image as Property or Input port. The default value of
this property is Property.

Location

Location [row column] of upper-left corner of second input image
relative to first input image

Specify the row and column position of upper-left corner of the
second input image relative to upper-left corner of first input
image as a two-element vector. This property applies when you

4-9

video.AlphaBlender class

set the LocationSource property to Property. The default value
of this property is [0 0]. This property is tunable.

See Coordinate Systems for a discussion on pixel coordinates and
spatial coordinates, which are the two main coordinate systems
used in the Video and Image Processing Blockset software.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap.

OpacityDataType

Opacity word and fraction lengths

Specify the opacity factor fixed-point data type as Same word
length as input or Custom. The default value of this property is
Same word length as input.

CustomOpacityDataType

Opacity word and fraction lengths

Specify the opacity factor fixed-point type as an unscaled
numerictype object with a Signedness of Auto. This property
applies when you set the OpacityDataType property to Custom.
The default value of this property is numerictype([],16).

ProductDataType

Product word and fraction lengths

4-10

video.AlphaBlender class

Specify the product fixed-point data type as Same as first
input or Custom. The default value of this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the ProductDataType property to Custom. The default value of
this property is numerictype([],32,10).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Same as first input, or Custom. The default value of
this property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the AccumulatorDataType property to Custom. The default
value of this property is numerictype([],32,10).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as first input
or Custom. The default value of this property is Same as first
input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies when you set

4-11

video.AlphaBlender class

the OutputDataType property to Custom. The default value of this
property is numerictype([],32,10).

Methods clone Create alpha blender object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Blend images, overlay images, or
highlight selected pixels

Examples Blend two images

i1 = im2single(imread('blobs.png'));
i2 = im2single(imread('circles.png'));
halphablend = video.AlphaBlender;
ib = step(halphablend,i1,i2);
imshow(ib)

Algorithm This object implements the algorithm, inputs, and outputs described on
the Compositing block reference page. The object properties correspond
to the block parameters.

See Also video.TextInserter

4-12

video.AlphaBlender.clone

Purpose Create alpha blender object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an AlphaBlender System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-13

video.AlphaBlender.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-14

video.AlphaBlender.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-15

video.AlphaBlender.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the AlphaBlender
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-16

video.AlphaBlender.step

Purpose Blend images, overlay images, or highlight selected pixels

Syntax Y = step(H,I1,I2)
Y = step(H,I1,I2,OPACITY)
Y = step(H,I1,I2,MASK)
Y = step(H,I1,MASK)
Y = step(H,I1,I2,...,LOCATION)

Description Y = step(H,I1,I2) performs the alpha blending operation on images
I1 and I2.

Y = step(H,I1,I2,OPACITY) uses OPACITY input to combine pixel
values of I1 and I2 when you set the Operation property to Blend and
the OpacitySource property to Input port.

Y = step(H,I1,I2,MASK) uses MASK input to overlay I2 over I1 when
you set the Operation property to Binary mask and the MaskSource
property to Input port’.

Y = step(H,I1,MASK) uses MASK input to determine which pixels in I1
are set to the maximum value supported by their data type when you
set the Operation property to Highlight selected pixels and the
MaskSource property to Input port.

Y = step(H,I1,I2,...,LOCATION) uses LOCATION input to specify
the upper-left corner position of I2 when you set the LocationSource
property to Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-17

video.Autocorrelator2D class

Purpose Compute 2-D autocorrelation of input matrix

Description The Autocorrelator2D object computes 2-D autocorrelation of input
matrix.

Construction H = video.Autocorrelator2D returns a System object, H, that
performs two-dimensional auto-correlation of an input matrix.

H =
video.Autocorrelator2D(’PropertyName’,PropertyValue,...)
returns a 2-D autocorrelation System object, H, with each specified
property set to the specified value.

Properties Fixed-Point Properties

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Same as input, or Custom. The default value for this
property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the AccumulatorDataType property to Custom. The default
value of this property is numerictype([],32,30).

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies when you set
the OutputDataType property to Custom. The default value of this
property is numerictype([],16,15).

4-18

video.Autocorrelator2D class

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the ProductDataType property to Custom. The default value of
this property is numerictype([],32,30).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as input or
Custom. The default value for this property is Same as input.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value for this property is Wrap.

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as input,
Custom. The default value for this property is Same as input.

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value for this
property is Floor.

Methods clone Create 2-D autocorrelator object
with same property values

getNumInputs Number of expected inputs to
step method

4-19

video.Autocorrelator2D class

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute cross-correlation of two
input matrices

Examples Compute the 2D autocorrelation of a matrix.

hac2d = video.Autocorrelator2D;
x = [1 2;2 1];
Y = step(hac2d, x)

Algorithm This object implements the algorithm, inputs, and outputs described
on the 2-D Autocorrelation block reference page. The object properties
correspond to the block parameters.

See Also video.Crosscorrelator2D | signalblks.Autocorrelator

4-20

video.Autocorrelator2D.clone

Purpose Create 2-D autocorrelator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an Autocorrelator2D System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-21

video.Autocorrelator2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-22

video.Autocorrelator2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-23

video.Autocorrelator2D.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
Autocorrelator2D System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-24

video.Autocorrelator2D.step

Purpose Compute cross-correlation of two input matrices

Syntax Y = step(H,X)

Description Y = step(H,X) returns the 2-D autocorrelation, Y, of input matrix X.

Calling step on an unlocked System object will lock that object.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-25

video.Autothresholder class

Purpose Convert intensity image to binary image

Description Convert intensity images to binary images. Autothresholding uses
Otsu’s method, which determines the threshold by splitting the
histogram of the input image such that the variance for each of the
pixel groups is minimized.

Construction H = video.Autothresholder returns a System object, H, that
automatically converts an intensity image to a binary image.

H = video.Autothresholder(’PropertyName’,PropertyValue,...)
returns an autothreshold object, H, with each specified property set to
the specified value.

Properties Operator

Threshold operator on input matrix values

Specify the condition the System object places on the input matrix
values as > or <=. If this property is set to > and the input value
is greater than the threshold value, the System object outputs 1;
otherwise, it outputs 0. If this property is set to <= and the input
value is less than or equal to the threshold value, the System
object outputs 1; otherwise, it outputs 0. The default value of
this property is >.

ThresholdOutputPort

Enable threshold output

Set this property to true to enable the output of the calculated
threshold values. The default value of this property is false.

EffectivenessOutputPort

Enable threshold effectiveness output

Set this property to true to enable the output of the effectiveness
of the thresholding. This effectiveness metric ranges from 0 to 1.
If every pixel has the same value, the effectiveness metric is 0.
If the image has two pixel values or the histogram of the image

4-26

video.Autothresholder class

pixels is symmetric, the effectiveness metric is 1. The default
value of this property is false.

InputRangeSource

Source of input data range

Specify the input data range as Auto or Property. If this property
is set to Auto, then the System object assumes that the input
range is between 0 and 1, inclusive, for floating point data types.
For all other data types, the input range is the full range of
the data type. To specify a different input data range, set this
property to Property. The default value of this property is Auto.

InputRange

Input data range

Specify the input data range as a two element numeric row
vector. First element of the input data range vector represents
the minimum input value while the second element represents
the maximum value. This property applies when you set the
InputRangeSource property to Property.

InputRangeViolationAction

Behavior when input values are out of range

Specify the System object’s behavior when the input values are
outside the expected data range as Ignore, or Saturate. This
property applies when you set the InputRangeSource property to
Property. The default value for this property is Saturate.

ThresholdScaleFactor

Threshold scale factor

Specify the threshold scale factor as a numeric scalar greater
than 0. The System object multiplies this scalar value with the
threshold value computed by Otsu’s method and uses the result
as the new threshold value. The default value of this property is
1, i.e. no threshold scaling. This property is tunable.

4-27

video.Autothresholder class

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value for this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap.

Product1DataType

Product-1 word and fraction lengths

This is a constant property with value Custom.

CustomProduct1DataType

Product-1 word and fraction lengths

Specify the product-1 fixed-point type as a signed numerictype
object with a Signedness of Auto. The default value of this
property is numerictype([],32).

Accumulator1DataType

Accumulator-1 word and fraction lengths

Specify the accumulator-1 fixed-point data type as Same as
product 1, Custom. The default value of this property is Same
as product 1.

CustomAccumulator1DataType

Accumulator-1 word and fraction lengths

Specify the accumulator-1 fixed-point type as a signed
numerictype object with a Signedness of Auto. This

4-28

video.Autothresholder class

property applies when you set the Accumulator1DataType
property to Custom. The default value of this property is
numerictype([],32).

Product2DataType

Product-2 word and fraction lengths

This is a constant property with value Custom.

CustomProduct2DataType

Product-2 word and fraction lengths

Specify the product-2 fixed-point type as a signed numerictype
object with a Signedness of Auto. The default value of this
property is numerictype([],32).

Accumulator2DataType

Accumulator-2 word and fraction lengths

Specify the accumulator-2 fixed-point data type as Same as
product 2, Custom. The default value of this property is Same
as product 2.

CustomAccumulator2DataType

Accumulator-2 word and fraction lengths

Specify the accumulator-2 fixed-point type as a signed
numerictype object with a Signedness of Auto. This
property applies when you set the Accumulator2DataType
property to Custom. The default value of this property is
numerictype([],32).

Product3DataType

Product-3 word and fraction lengths

This is a constant property with value Custom.

CustomProduct3DataType

Product-3 word and fraction lengths

4-29

video.Autothresholder class

Specify the product-3 fixed-point type as a signed numerictype
object with a Signedness of Auto. The default value of this
property is numerictype([],32).

Accumulator3DataType

Accumulator-3 word and fraction lengths

Specify the accumulator-3 fixed-point data type as Same as
product 3, Custom. This property applies when you set the
EffectivenessOutputPort property to true. The default value of
this property is Same as product 3.

CustomAccumulator3DataType

Accumulator-3 word and fraction lengths

Specify the accumulator-3 fixed-point type as a signed
numerictype object with a Signedness of Auto. This property
applies when you set the EffectivenessOutputPort property
to true, and when you set the Accumulator3DataType
property to Custom. The default value of this property is
numerictype([],32).

Product4DataType

Product-4 word and fraction lengths

Specify the product-4 fixed-point data type as Same as input , or
Custom. The default value for this property is Custom.

CustomProduct4DataType

Product-4 word and fraction lengths

Specify the product-4 fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the Product4DataType property to Custom. The default value
of this property is numerictype([],32,15).

Accumulator4DataType

Accumulator-4 word and fraction lengths

4-30

video.Autothresholder class

Specify the accumulator-4 fixed-point data type as Same as
product 4, Custom. The default value of this property is Same
as product 4.

CustomAccumulator4DataType

Accumulator-4 word and fraction lengths

Specify the accumulator-4 fixed-point type as a scaled
numerictype object with a Signedness of Auto. This
property applies when you set the Accumulator4DataType
property to Custom. The default value of this property is
numerictype([],16,4).

QuotientDataType

Quotient word and fraction lengths

Specify the quotient fixed-point data type as Custom.

CustomQuotientDataType

Quotient word and fraction lengths

Specify the quotient fixed-point type as a signed numerictype
object with a Signedness of Auto. This property applies when you
set the QuotientDataType property to Custom. The default value
of this property is numerictype([],32).

EffectivenessDataType

Effectiveness metric word and fraction lengths

This is a constant property with value Custom. This property
applies when you set the EffectivenessOutputPort property
to true.

CustomEffectivenessDataType

Effectiveness metric word and fraction lengths

Specify the effectiveness metric fixed-point type as a signed
numerictype object with a Signedness of Auto. This property

4-31

video.Autothresholder class

applies when you set the EffectivenessOutputPort property to
true. The default value of this property is numerictype([],16).

Methods clone Create autothresholder object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Convert input intensity image to
a binary image

Examples Convert an image of peppers to binary.

img = im2single(rgb2gray(imread('peppers.png')));
imshow(img);
hautoth = video.Autothresholder;
bin = step(hautoth,img);
pause(2);
figure;imshow(bin);

Algorithm This object implements the algorithm, inputs, and outputs described
on the Autothreshold block reference page. The object properties
correspond to the block parameters, except for:

• You can only specify a value of Ignore or Saturate for the
InputRangeViolationAction property of the System object. The
object does not support the Error and Warn and Saturate options
that the corresponding When data range is exceeded block
parameter offers.

4-32

video.Autothresholder class

See Also video.ColorSpaceConverter

4-33

video.Autothresholder.clone

Purpose Create autothresholder object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a Autothresholder System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-34

video.Autothresholder.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-35

video.Autothresholder.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-36

video.Autothresholder.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
Autothresholder System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-37

video.Autothresholder.step

Purpose Convert input intensity image to a binary image

Syntax BW = step(H,I)
[BW,TH] = step(H,I)
[...,EMETRIC] = step(H,I)

Description BW = step(H,I) converts input intensity image, I, to a binary image,
BW.

[BW,TH] = step(H,I) also returns the threshold, TH, when the
ThresholdOutputPort property is true.

[...,EMETRIC] = step(H,I) also returns EMETRIC, a metric
indicating the effectiveness of thresholding the input image when the
EffectivenessOutputPort property is true. The lower bound of the
metric (zero) is attainable only by images having a single gray level, and
the upper bound (one) is attainable only by two-valued images.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-38

video.BinaryFileReader class

Purpose Read video data from binary files

Description The BinaryFileReader object reads video data from binary files.

Construction H = video.BinaryFileReader returns a System object, H, that reads
binary video data from the specified file in I420 Four Character Code
(FOURCC) video format.

H = video.BinaryFileReader(’PropertyName’,PropertyValue,
...) returns a binary file reader System object, H, with each specified
property set to the specified value.

H =
video.BinaryFileReader(FILE,’PropertyName’,PropertyValue,
...) returns a binary file reader System object, H, with the
Filename property set to FILE and other specified properties set to
the specified values.

Properties Filename

Name of binary file to read from

Specify the name of the binary file as a string. The full path for
the file needs to be specified only if the file is not on the MATLAB
path. The default value of this property is vipmen.bin.

VideoFormat

Format of binary video data

Specify the format of the binary video data as Four character
codes, or Custom. The default value of this property is Four
character codes.

FourCharacterCode

Four Character Code video format

Specify the binary file format from the available list of Four
Character Code video formats. For more information on Four
Character Codes, see http://www.fourcc.org. This property applies

4-39

http://www.fourcc.org

video.BinaryFileReader class

when you set the VideoFormat property to Four character
codes.

BitstreamFormat

Format of data as planar or packed

Specify the data format as Planar or Packed. This property
applies when you set the VideoFormat property to Custom. The
default value of this property is Planar.

OutputSize

Size of output matrix

Specify the size of the output matrix. This property applies when
you set the BitstreamFormat property to Packed.

VideoComponentCount

Number of video components in video stream

Specify the number of video components in the video stream as
1, 2, 3 or 4. This number corresponds to the number of video
component outputs. This property applies when you set the
VideoFormat property to Custom. The default value of this
property is 3.

VideoComponentBits

Bit size of video components

Specify the bit sizes of video components as an integer
valued vector of length N, where N is the value of the
VideoComponentCount property. This property applies when you
set the VideoFormat property to Custom. The default value of
this property is [8 8 8].

VideoComponentSizes

Size of output matrix

Specify the size of the output matrix. This property must be set to
anN-by-2 array, whereN is the value of the VideoComponentCount

4-40

video.BinaryFileReader class

property. Each row of the matrix corresponds to the size of that
video component, with the first element denoting the number of
rows and the second element denoting the number of columns.
This property applies when you set the VideoFormat property
to Custom and the BitstreamFormat property to Planar. The
default value of this property is [120 160; 60 80; 60 80].

VideoComponentOrder

How to arrange video components in binary file

Specify how to arrange the components in the binary file. This
property must be set to a vector of length N, where N is the value
of the VideoComponentCount property. This property applies
when you set the VideoFormat property to Custom. The default
value of this property is [1 2 3].

InterlacedVideo

Whether data stream represents interlaced video

Set this property to true if the video stream represents interlaced
video data. This property applies when you set the VideoFormat
property to Custom. The default value of this property is false.

LineOrder

How to fill binary file

Specify how to fill the binary file as Top line first, or Bottom
line first. If this property is set to Top line first, the
System object first fills the binary file with the first row of the
video frame. If it is set to Bottom line first, the System object
first fills the binary file with the last row of the video frame. The
default value of this property is Top line first.

SignedData

Whether input data is signed

Set this property to true if the input data is signed. This property
applies when you set the VideoFormat property to Custom. The
default value of this property is false.

4-41

video.BinaryFileReader class

ByteOrder

Byte ordering as little endian or big endian

Specify the byte ordering in the output binary file as Little
endian, Big endian. This property applies when you set the
VideoFormat property to Custom. The default value of this
property is Little endian.

PlayCount

Number of times to play the file

Specify the number of times to play the file as a positive integer or
inf. The default value of this property is 1.

Methods clone Create binary file reader object
with same property values

close Release resources for the System
object

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isDone End-of-file status (logical)

isLocked Locked status (logical) for input
attributes and non-tunable
properties

reset Reset to beginning of file

step Read video components from a
binary file

Examples Read in a binary video file and play it back on the screen

hbfr = video.BinaryFileReader('ecolicells.bin');

4-42

video.BinaryFileReader class

hbfr.VideoFormat = 'Custom';
hbfr.VideoComponentCount = 1;
hbfr.VideoComponentBits = 16;
hbfr.VideoComponentSizes = [442 538];
hbfr.VideoComponentOrder = 1;

hvp = video.VideoPlayer;
while ~isDone(hbfr)
y = step(hbfr);

step(hvp,y);
end
close(hbfr); % close the input file
close(hvp); % close the video display

Algorithm This object implements the algorithm, inputs, and outputs described
on the Write Binary File block reference page. The object properties
correspond to the block parameters.

See Also video.MultimediaFileReader | video.BinaryFileWriter

4-43

video.BinaryFileReader.clone

Purpose Create binary file reader object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a BinaryFileReader System object C, with the
same property values as H. The clone method creates a new unlocked
object with uninitialized states.

4-44

video.BinaryFileReader.close

Purpose Release resources for the BinaryFileReader System object

Syntax close(H)

Description close(H) releases system resources (such as memory, file handles or
hardware connections).

4-45

video.BinaryFileReader.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-46

video.BinaryFileReader.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-47

video.BinaryFileReader.isDone

Purpose End-of-file status (logical)

Syntax TF = isDone(H)

Description TF = isDone(H) returns true if the BinaryFileReader System object,
H , has reached the end of the binary file. If PlayCount property is set
to a value greater than 1 , this method will return true every time
the end is reached.

4-48

video.BinaryFileReader.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
BinaryFileReader System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-49

video.BinaryFileReader.reset

Purpose Reset to beginning of file

Syntax reset(H)

Description reset(H) System object H to the beginning of the specified file.

4-50

video.BinaryFileReader.step

Purpose Read video components from a binary file

Syntax [Y,Cb,Cr] = step(H)
Y = step(H)
[Y,Cb] = step(H)
[Y,Cb,Cr] = step(H)
[Y,Cb,Cr,Alpha] = step(H)
[..., EOF] = step(H)

Description [Y,Cb,Cr] = step(H) reads the luma, Y and chroma, Cb and Cr
components of a video stream from the specified binary file when you
set the VideoFormat property to ’Four character codes’.

Y = step(H) reads the video component Y from the binary file when you
set the VideoFormat property to Custom and the VideoComponentCount
property to 1.

[Y,Cb] = step(H) reads video the components Y and Cb from the
binary file when you set the VideoFormat property toCustom and the
VideoComponentCount property to 2.

[Y,Cb,Cr] = step(H) reads the video components Y, Cb and
Cr when you set the VideoFormat property to Custom, and the
VideoComponentCount property to 3.

[Y,Cb,Cr,Alpha] = step(H) reads the video components Y, Cb, Cr
and Alpha when you set the VideoFormat property to Custom and the
VideoComponentCount property to 4.

[..., EOF] = step(H) also returns the end-of-file indicator, EOF .
EOF is set to true each time the output contains the last video frame
in the file.

4-51

video.BinaryFileReader.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-52

video.BinaryFileWriter class

Purpose Write binary video data to files

Description The BinaryFileWriter object writes binary video data to files.

Construction H = video.BinaryFileWriter returns a System object, H, that writes
binary video data to an output file, output.bin in the I420 Four
Character Code format.

H = video.BinaryFileWriter(’PropertyName’,PropertyValue,
...) returns a binary file writer System object, H, with each specified
property set to the specified value.

H =
video.BinaryFileWriter(FILE,’PropertyName’,PropertyValue,
...) returns a binary file writer System object, H, with the
Filename property set to FILE and other specified properties set to
the specified values.

Properties Filename

Name of binary file to write to

Specify the name of the binary file as a string. The default value
of this property is the file output.bin.

VideoFormat

Format of binary video data

Specify the format of the binary video data as Four character
codes, or Custom. The default value of this property is Four
character codes.

FourCharacterCode

Four Character Code video format

Specify the binary file format from the available list of Four
Character Code video formats. For more information on Four
Character Codes, see http://www.fourcc.org. This property applies

4-53

http://www.fourcc.org

video.BinaryFileWriter class

when you set the VideoFormat property to Four character
codes.

BitstreamFormat

Format of data as planar or packed

Specify the data format as Planar or Packed. This property
applies when you set the VideoFormat property to Custom. The
default value of this property is Planar.

VideoComponentCount

Number of video components in video stream

Specify the number of video components in the video stream as
1, 2, 3 or 4. This number corresponds to the number of video
component outputs. This property applies when you set the
VideoFormat property to Custom. The default value of this
property is 3.

VideoComponentBitsSource

How to specify the size of video components

Indicate how to specify the size of video components as Auto or
Property. If this property is set to Auto, each component will
have the same number of bits as the input data type. Otherwise,
the number of bits for each video component is specified using
the VideoComponentBits property. This property applies when
you set the VideoFormat property to Custom. The default value
of this property is Auto.

VideoComponentBits

Bit size of video components

Specify the bit size of video components using a vector of length N,
where N is the value of the VideoComponentCount property. This
property applies when you set the VideoComponentBitsSource
property to Property. The default value of this property is [8
8 8].

4-54

video.BinaryFileWriter class

VideoComponentOrder

How to arrange video components in binary file

Specify how to arrange the components in the binary file. This
property must be set to a vector of length N, where N is the value
of the VideoComponentCount property. This property applies
when you set the VideoFormat property to Custom. The default
value of this property is [1 2 3].

InterlacedVideo

Whether data stream represents interlaced video

Set this property to true if the video stream represents interlaced
video data. This property applies when you set the VideoFormat
property to Custom. The default value of this property is false.

LineOrder

How to fill binary file

Specify how to fill the binary file as Top line first, or Bottom
line first. If this property is set to Top line first, the object
first fills the binary file with the first row of the video frame.
Otherwise, the object first fills the binary file with the last row of
the video frame. The default value of this property is Top line
first.

SignedData

Whether input data is signed

Set this property to true if the input data is signed. This property
applies when you set the VideoFormat property to Custom. The
default value of this property is false.

ByteOrder

Byte ordering as little endian or big endian

Specify the byte ordering in the output binary file as Little
endian, or Big endian. This property applies when you set

4-55

video.BinaryFileWriter class

the VideoFormat property to Custom. The default value of this
property is Little endian.

Methods clone Create binary file writer object
with same property values

close Close binary data file

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Write video frame to output file

Examples Write video to a binary video file

filename = fullfile(tempdir,'output.bin');
hbfr = video.BinaryFileReader;
hbfw = video.BinaryFileWriter(filename);
while ~isDone(hbfr)
[y,cb,cr] = step(hbfr);
step(hbfw,y,cb,cr);

end
close(hbfr); % close the input file
close(hbfw); % close the output file

Algorithm This object implements the algorithm, inputs, and outputs described
on the Write Binary File block reference page. The object properties
correspond to the block parameters.

See Also video.MultimediaFileWriter | video.BinaryFileReader

4-56

video.BinaryFileWriter.clone

Purpose Create binary file writer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a BinaryFileWriter System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-57

video.BinaryFileWriter.close

Purpose Close binary data file

Syntax close(H)

Description close(H) closes the binary data file.

4-58

video.BinaryFileWriter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-59

video.BinaryFileWriter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-60

video.BinaryFileWriter.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
BinaryFileWriter System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-61

video.BinaryFileWriter.step

Purpose Write video frame to output file

Syntax step(H,Y,Cb,Cr)
step(H,Y)
step(H,Y,Cb)
step(H,Y,Cb,Cr)
step(H,Y,Cb,Cr,Alpha)

Description step(H,Y,Cb,Cr) writes one frame of video to the specified output file.
Y , Cb, Cr represent the luma (Y) and chroma (Cb and Cr) components
of a video stream. This option applies when you set the VideoFormat
property to Four character codes.

step(H,Y) writes video component Y to the output file when the
VideoFormat property is set to Custom and the VideoComponentCount
property is set to 1.

step(H,Y,Cb) writes video components Y and Cb to the output file when
the VideoFormat property is Custom and the VideoComponentCount
property is set to 2.

step(H,Y,Cb,Cr) writes video components Y , Cb and Cr to the
output file when the VideoFormat property is set to Custom and the
VideoComponentCount property is set to3.

step(H,Y,Cb,Cr,Alpha) writes video components Y , Cb, Cr and Alpha
to the output file when the VideoFormat property is set to Custom, and
the VideoComponentCount property is set to 4.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-62

video.BlobAnalysis class

Purpose Compute statistics for connected regions in a binary image

Description The BlobAnalysis object computes statistics for connected regions in
a binary image.

Construction H = video.BlobAnalysis returns a System object, H, that computes
area, centroid, and bounding box for connected regions in a binary
image.

H = video.BlobAnalysis(’PropertyName’,PropertyValue,...)
returns a System object, H, with each specified property set to the
specified value.

Properties AreaOutputPort

Return blob area

Setting this property to true outputs the area of the blobs. The
default value for this property is true.

CentroidOutputPort

Return coordinates of blob centroids

Set this property to true to output the coordinates of the centroid
of the blobs. The default value for this property is true.

BoundingBoxOutputPort

Return coordinates of bounding boxes

Set this property to true to output the coordinates of the bounding
boxes. The default value for this property is true.

MajorAxisLengthOutputPort

Return vector whose values represent lengths of ellipses’ major
axes

Set this property to true to output a vector whose values represent
the lengths of the major axes of the ellipses that have the same
normalized second central moments as the labeled regions. This

4-63

video.BlobAnalysis class

property applies when you set the OutputDataType property to
double or single. The default value for this property is false.

MinorAxisLengthOutputPort

Return vector whose values represent lengths of ellipses’ minor
axes

Set this property to true to output a vector whose values represent
the lengths of the minor axes of the ellipses that have the same
normalized second central moments as the labeled regions. This
property is available when the OutputDataType property is
double or single. The default value of this property is false.

OrientationOutputPort

Return vector whose values represent angles between ellipses’
major axes and x-axis

Set this property to true to output a vector whose values represent
the angles between the major axes of the ellipses and the x-axis.
This property applies when you set the OutputDataType property
to double or single. The default value of this property is false.

EccentricityOutputPort

Return vector whose values represent ellipses’ eccentricities

Set this property to true to output a vector whose values
represent the eccentricities of the ellipses that have the same
second moments as the region. This property applies when you set
the OutputDataType property to double or single. The default
value for this property is false.

EquivalentDiameterSquaredOutputPort

Return vector whose values represent equivalent diameters
squared

4-64

video.BlobAnalysis class

Set this property to true to output a vector whose values
represent the equivalent diameters squared. The default value for
this property is false.

ExtentOutputPort

Return vector whose values represent results of dividing blob
areas by bounding box areas

Set this property to true to output a vector whose values represent
the results of dividing the areas of the blobs by the area of their
bounding boxes. The default value for this property is false.

PerimeterOutputPort

Return vector whose values represent estimates of blob perimeter
lengths

Set this property to true to output a vector whose values
represent estimates of the perimeter lengths, in pixels, of each
blob. The default value of this property is false.

OutputDataType

Output data type of statistics

Specify the data type of the output statistics as double, single,
or Fixed point. Area and bounding box outputs are always an
int32 data type. Major axis length, Minor axis length,
Orientation and Eccentricity do not apply when you set this
property to Fixed point. The default value of this property is
double.

Connectivity

Which pixels are connected to each other

Specify connectivity of pixels as 4 or 8.

LabelMatrixOutputPort

Return label matrix

4-65

video.BlobAnalysis class

Set this property to true to output the label matrix. The default
value for this property is false.

MaximumCount

Maximum number of labeled regions in each input image

Specify the maximum number of blobs in the input image as a
positive scalar integer. The default value for this property is 50.

NumBlobsOutputPort

Return scalar value that represents actual number of labeled
regions in each image

Set this property to true to output a scalar value that represents
the actual number of labeled regions in each image. The default
value of this property is false.

MinimumBlobAreaSource

Source of minimum blob area

Specify how the BlobAnalysis object determines the minimum
blob area using Auto or Property. In this case, the minimum blob
area is 0. The default value for this property is Auto.

MinimumBlobArea

Minimum blob area in pixels

Specify the minimum blob area in pixels. This property applies
when you set the MinimumBlobAreaSource to Property. The
default value for this property is 0.

MaximumBlobAreaSource

Source of maximum blob area

Specify how the BlobAnalysis object determines the maximum
blob area using Auto or Property. In this case, the maximum blob
area is intmax('uint32'). The default value for this property
is Auto.

MaximumBlobArea

4-66

video.BlobAnalysis class

Maximum blob area in pixels

Specify the maximum blob area in pixels. This property applies
when you set the MaximumBlobAreaSource property to Property.
The default value for this property is intmax('uint32').

ExcludeBorderBlobs

Exclude blobs that contain at least one border pixel

Set this property to true if you do not want to label blobs that
contain at least one border pixel. The default value for this
property is false.

FillEmptySpaces

Fill empty spaces in statistical vectors with specified values

Use this property to fill the empty spaces in the statistical vectors
with the value(s) you specify in the FillValues property. The
default value for this property is true.

FillValues

Value(s) used to fill all empty spaces in statistical vectors

Specify a scalar value that is used to fill all the empty spaces in
the statistical vectors or a vector, where the object uses each
vector element to fill a different statistics vector. This property
applies when you set the FillEmptySpaces property to true. The
default value for this property is -1.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when
you set the OutputDataType property to Fixed point. The
default value of this property is Floor.

4-67

video.BlobAnalysis class

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies when you set the OutputDataType property to Fixed
point.

ProductDataType

Product word and fraction lengths

This property is constant and is set to Custom. This property
applies when you set the OutputDataType property to Fixed
point and the EquivalentDiameterSquaredOutputPort property
to true.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when
you set the OutputDataType property to Fixed point and the
EquivalentDiameterSquaredOutputPort property to true. The
default value of this property is numerictype([],32,16).

AccumulatorDataType

Accumulator word and fraction lengths

This property is constant and is set to Custom. This property
applies when you set the OutputDataType property to Fixed
point.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the OutputDataType property to Fixed point. The default
value of this property is numerictype([],32,0).

4-68

video.BlobAnalysis class

CentroidDataType

Centroid word and fraction lengths

Specify the centroid output’s fixed-point data type as Same
as accumulator, Custom. This property applies when you
set the OutputDataType property to Fixed point and the
CentroidOutputPort property to true. The default value of this
property is Custom.

CustomCentroidDataType

Centroid word and fraction lengths

Specify the centroid output’s fixed-point type as a scaled
numerictype object with a Signedness of Auto. This property
applies when you set the OutputDataType property to Fixed
point and the CentroidDataType property to Custom and when
the CentroidOutputPort property to true. The default value of
this property is numerictype([],32,16).

EquivalentDiameterSquaredDataType

Equivalent diameter squared word and fraction lengths

Specify the equivalent diameters squared output’s fixed-point data
type as Same as accumulator, Same as product, Custom. This
property applies when you set the OutputDataType property to
Fixed point and the EquivalentDiameterSquaredOutputPort
property to true. The default value for this property is Same as
product.

CustomEquivalentDiameterSquaredDataType

Equivalent diameter squared word and fraction lengths

Specify the equivalent diameters squared output’s
fixed-point type as a scaled numerictype object with a
Signedness of Auto. This property applies when you set
the OutputDataType property to Fixed point and the
EquivalentDiameterSquaredDataType property to Custom
and when the EquivalentDiameterSquaredOutputPort

4-69

video.BlobAnalysis class

property to true. The default value of this property is
numerictype([],32,16).

ExtentDataType

Extent word and fraction lengths

Specify the extent output’s fixed-point data type as Same as
accumulator or Custom. This property applies when you
set the OutputDataType property to Fixed point and the
ExtentOutputPort property to true.

CustomExtentDataType

Extent word and fraction lengths

Specify the extent output’s fixed-point type as a scaled
numerictype object with a Signedness of Auto. This property
applies when you set the OutputDataType property to Fixed
point, the ExtentDataType property to Custom and the
ExtentOutputPort property to true. The default value of this
property is numerictype([],16,14).

PerimeterDataType

Perimeter word and fraction lengths

Specify the perimeter output’s fixed-point data type as Same
as accumulator or Custom. This property applies when you
set the OutputDataType property to Fixed point and the
PerimeterOutputPort property to true. The default value of
this property is Custom.

CustomPerimeterDataType

Perimeter word and fraction lengths

Specify the perimeter output’s fixed-point type as a scaled
numerictype object with a Signedness of Auto. This property
applies when you set the OutputDataType property to Fixed
point, the PerimeterDataType property to Custom and the
PerimeterOutputPort property to true. The default value of this
property is numerictype([],32,16).

4-70

video.BlobAnalysis class

Methods clone Create blob analysis object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute and returns statistics of
input binary image

Examples Find the centroid of a blob.

hblob = video.BlobAnalysis;
hblob.AreaOutputPort = false;
hblob.BoundingBoxOutputPort = false;
hblob.NumBlobsOutputPort = true;
img = logical([0 0 0 0 0 0; ...
0 1 1 1 1 0; ...
0 1 1 1 1 0; ...
0 1 1 1 1 0; ...
0 0 0 0 0 0]);
[centroid, numBlobs] = step(hblob, img);
centroid = centroid(:,numBlobs)

Algorithm This object implements the algorithm, inputs, and outputs described
on the Blob Analysis block reference page. The object properties
correspond to the block parameters, except for:

• The Warn if maximum number of blobs is exceeded block
parameter does not have a corresponding object property. The object
does not issue a warning.

4-71

video.BlobAnalysis class

• The Output blob statistics as a variable-size signal block
parameter does not have a corresponding object property.

See Also video.Autothresholder | video.ConnectedComponentLabeler

4-72

video.BlobAnalysis.clone

Purpose Create blob analysis object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a BlobAnalysis System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-73

video.BlobAnalysis.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-74

video.BlobAnalysis.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-75

video.BlobAnalysis.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the BlobAnalysis
System objects.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-76

video.BlobAnalysis.step

Purpose Compute and returns statistics of input binary image

Syntax AREA = step(H,BW)
[...,CENTROID] = step(H,BW)
[...,BBOX] = step(H,BW)
[...,MAJORAXIS] = step(H,BW)
[...,MINORAXIS] = step(H,BW)
[...,ORIENTATION] = step(H,BW)
[...,ECCENTRICITY] = step(H,BW)
[...,EQDIASQ] = step(H,BW)
[...,EXTENT] = step(H,BW)
[...,PERIMETER] = step(H,BW)
[...,LABEL] = step(H,BW)
[...,NUMBLOBS] = step(H,BW)
[AREA,CENTROID,BBOX] = step(H,BW)

Description AREA = step(H,BW) computes the AREA of the blobs found in input
binary image BW when the AreaOutputPort property is set to true.

[...,CENTROID] = step(H,BW) computes the CENTROID of the blobs
found in input binary image BW when the CentroidOutputPort property
is set to true.

[...,BBOX] = step(H,BW) computes the bounding box BBOX of the
blobs found in input binary image BW when the BoundingBoxOutputPort
property is set to true.

[...,MAJORAXIS] = step(H,BW) computes the major axis length
MAJORAXIS of the blobs found in input binary image BW when the
MajorAxisLengthOutputPort property is set to true.

[...,MINORAXIS] = step(H,BW) computes the minor axis length
MINORAXIS of the blobs found in input binary image BW when the
MinorAxisLengthOutputPort property is set to true.

[...,ORIENTATION] = step(H,BW) computes the ORIENTATION of the
blobs found in input binary image BW when the OrientationOutputPort
property is set to true.

4-77

video.BlobAnalysis.step

[...,ECCENTRICITY] = step(H,BW) computes the ECCENTRICITY
of the blobs found in input binary image BW when the
EccentricityOutputPort property is set to true.

[...,EQDIASQ] = step(H,BW) computes the equivalent diameter
squared EQDIASQ of the blobs found in input binary image BW when the
EquivalentDiameterSquaredOutputPort property is set to true.

[...,EXTENT] = step(H,BW) computes the EXTENT of the blobs found
in input binary image BW when the ExtentOutputPort property is set
to true.

[...,PERIMETER] = step(H,BW) computes the PERIMETER of the
blobs found in input binary image BW when the PerimeterOutputPort
property is set to true.

[...,LABEL] = step(H,BW) returns a label matrix LABEL of the blobs
found in input binary image BW when the LabelMatrixOutputPort
property is set to true.

[...,NUMBLOBS] = step(H,BW) returns the number of blobs found in
the input binary image BW when the NumBlobsOutputPort property is
set to true.

[AREA,CENTROID,BBOX] = step(H,BW) returns the area, centroid
and the bounding box of the blobs, when the AreaOutputPort,
CentroidOutputPort and BoundingBoxOutputPort properties are set
to true. You can use this to calculate multiple statistics.

The step method computes and returns statistics of the input binary
image depending on the property values specified. The different options
can be used simultaneously. The order of the returned values when
there are multiple outputs are in the order they are described.

4-78

video.BlobAnalysis.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-79

video.BlockMatcher class

Purpose Estimate motion between images or video frames

Description The BlockMatcher object estimates motion between images or video
frames.

Construction H = video.BlockMatcher returns a System object, H, that estimates
motion between two images or two video frames using a block matching
method by moving a block of pixels over a search region.

H = video.BlockMatcher(’PropertyName’,PropertyValue,...)
returns a block matcher System object, H, with each specified property
set to the specified value.

Properties ReferenceFrameSource

Source of reference frame

Specify the source of the reference frame as Input port or
Property. When you set the ReferenceFrameSource property
to Input port a reference frame input must be specified to the
step method of the block matcher object. The default value of
this property is Property.

ReferenceFrameDelay

Number of frames between reference and current frames

Specify the number of frames between the reference frame
and the current frame as a scalar integer value greater than
or equal to zero. This property applies when you set the
ReferenceFrameSource property to Property. The default value
of this property is 1.

SearchMethod

Search method for best match

Specify how to locate the block of pixels in frame k+1 that best
matches the block of pixels in frame k. You can specify the search
method as Exhaustive or Three-step. If this property is set
to Exhaustive, the block matcher object selects the location of

4-80

video.BlockMatcher class

the block of pixels in frame k+1 by moving the block over the
search region one pixel at a time. This process is computationally
expensive.

If this property is set to Three-step, the block matcher object
searches for the block of pixels in frame k+1 that best matches the
block of pixels in frame k using a steadily decreasing step size.
The object begins with a step size approximately equal to half the
maximum search range. In each step, the object compares the
central point of the search region to eight search points located
on the boundaries of the region and moves the central point to
the search point whose values is the closest to that of the central
point. The object then reduces the step size by half, and begins
the process again. This option is less computationally expensive,
though it might not find the optimal solution. The default value
of this property is Exhaustive.

BlockSize

Size of block in pixels

Specify the size of the block in pixels. The default value of this
property is [17 17].

Overlap

Overlap of two subdivisions of input image in pixels

Specify the overlap (in pixels) of two subdivisions of the input
image. The default value of this property is [0 0].

MaximumDisplacement

Maximum displacement to search in pixels

Specify the maximum number of pixels that any center pixel in a
block of pixels might move, from image to image or from frame to
frame. The block matcher object uses this property to determine
the size of the search region. The default value of this property is
[7 7].

MatchCriteria

4-81

video.BlockMatcher class

Match criteria between blocks

Specify how the System object measures the similarity of the
block of pixels between two frames or images as Mean square
error (MSE), or Mean absolute difference (MAD). The default
value for this property is Mean square error (MSE).

OutputValue

Desired form of motion output

Specify the desired form of motion output as Magnitude-squared,
or Horizontal and vertical components in complex form.
The default value for this property is Magnitude-squared.

Fixed-Point Properties

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as input, or
Custom. This property applies when you set the MatchCriteria
property to Mean square error (MSE). The default value of this
property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the MatchCriteria property to Mean square error (MSE)
and the ProductDataType property to Custom. The default value
of this property is numerictype([],32,0).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Custom.

CustomAccumulatorDataType

4-82

video.BlockMatcher class

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. The default value of this
property is numerictype([],32,0).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Custom.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as an unscaled numerictype
object with a Signedness of Auto. The numerictype object should
be unsigned if the OutputValue property is Magnitude-squared
and, signed if it is Horizontal and vertical components
in complex form. The default value of this property is
numerictype([],8).

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value of this property is Saturate

4-83

video.BlockMatcher class

Methods clone Create block matcher object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute motion of input image

Examples Estimate motion

img1 = im2double(rgb2gray(imread('onion.png')));
htran = video.GeometricTranslator('Offset', [5 5], ...
'OutputSize', 'Same as input image');
hbm = video.BlockMatcher(...
'ReferenceFrameSource','Input port','BlockSize',[35 35]);
hbm.OutputValue = ...
'Horizontal and vertical components in complex form';
hds = video.ShapeInserter('Shape','Lines', ...
'BorderColor','Custom', ...
'CustomBorderColor', 255);
img2 = step(htran, img1);
tmp = step(hbm, img1, img2);
% compute motion for the two images
[Y X] = meshgrid(1:35:size(img1, 2), 1:35:size(img1, 1));
lines = ...

[X(:)';Y(:)'; X(:)'+imag(tmp(:))';Y(:)'+real(tmp(:))'];
% draw lines to indicate motion
out = step(hds, img1, lines);
imshow(uint8(out)); % show the motion

4-84

video.BlockMatcher class

Algorithm This object implements the algorithm, inputs, and outputs described
on the Block Matching block reference page. The object properties
correspond to the block parameters.

See Also video.OpticalFlow

4-85

video.BlockMatcher.clone

Purpose Create block matcher object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a BlockMatcher System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-86

video.BlockMatcher.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-87

video.BlockMatcher.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-88

video.BlockMatcher.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the BlockMatcher
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-89

video.BlockMatcher.step

Purpose Compute motion of input image

Syntax V = step(H,I)
C = step(H,I)
Y = step(H,I,IREF)

Description V = step(H,I) computes the motion of input image I from one video
frame to another, and returns V as a matrix of velocity magnitudes.

C = step(H,I) computes the motion of input image I from one video
frame to another, and returns C as a complex matrix of horizontal
and vertical components, when you set the OutputValue property to
Horizontal and vertical components in complex form.

Y = step(H,I,IREF) computes the motion between input image I
and reference image IREF when the ReferenceFrameSource property
is Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-90

video.BoundaryTracer class

Purpose Trace object boundaries in binary images

Description The boundary tracer object traces object boundaries in binary images.

Construction H = video.BoundaryTracer returns a System object, H, that traces the
boundaries of objects in a binary image in which nonzero pixels belong
to an object and zero-valued pixels constitute the background.

H = video.BoundaryTracer(’PropertyName’,PropertyValue,...)
returns an object, H, with each specified property set to the specified
value.

Properties Connectivity

Which pixels are connected to each other

Specify which pixels are connected to each other as 4 or 8. Set this
property to 4 to connect a pixel to the pixels on the top, bottom,
left, and right. Set this property to 8 to connect a pixel to the
pixels on the top, bottom, left, right, and diagonally. The default
value of this property is 8.

InitialSearchDirection

First search direction to find next boundary pixel

Specify the first direction in which to look to find the next
boundary pixel that is connected to the starting pixel. This
property can be set to one of North, Northeast, East, Southeast,
South, Southwest, West, Northwest when the Connectivity
property is set to 8 and can be set to one of North, East, South,
West when the Connectivity property is set to 4. The default
value of this property is North.

TraceDirection

Direction in which to trace the boundary

Specify the direction in which to trace the boundary as Clockwise
or Counterclockwise. The default value of this property is
Clockwise.

4-91

video.BoundaryTracer class

MaximumPixelCount

Maximum number of boundary pixels

Specify the maximum number of boundary pixels as a scalar
integer greater than 1. The object uses this value to preallocate
the number of rows of the output matrix Y so that it can hold
all the boundary pixel location values. The default value of this
property is 500.

PixelCountOutputPort

Enable output of actual number of boundary pixels

Set this property to true to output a vector where each element
represents the actual number of boundary pixels found for each
starting point. The default value of this property is false.

NoBoundaryAction

How to fill empty spaces in output matrix

Specify how to fill the empty spaces in the output matrix Y as None,
Fill with last point found, or Fill with user-defined
values. If you set this property to None, the object takes no
action. So, any element that does not contain a boundary pixel
location will not have a meaningful value. If you set this property
to Fill with last point found, the object fills the remaining
elements with the position of the last boundary pixel. If you set
this property to Fill with user-defined values, you must
specify the values in the FillValues property. The default value
of this property is None.

FillValues

Value to fill in remaining empty elements in output matrix

Set this property to a scalar value or two-element vector to fill
in the remaining empty elements in the output matrix Y. This
property applies when you set the NoBoundaryAction property
to Fill with user-defined values. The default value of this
property is [0 0].

4-92

video.BoundaryTracer class

Methods clone Create boundary tracer object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Trace boundaries of objects in
binary image

Examples Trace boundaries around objects in an image

hautoth = video.Autothresholder;
hboundtrace = video.BoundaryTracer;
% Read in the image
x = imread('coins.png');
% Use autothresholding to binarize the image.
bw = step(hautoth,x);
% Derive the start points
[row, col]= find(bw,1);
startpts = [row-2;col];
% Determine the boundaries
y = step(hboundtrace,bw,startpts);
y(y == 0) = [];
% Display the results
figure, imshow(bw);
hold('on');
plot(y(2:2:end,:)+1,y(1:2:end, :)+1,'r','Linewidth',2);

Algorithm This object implements the algorithm, inputs, and outputs described
on the Trace Boundaries block reference page. The object properties
correspond to the block parameters.

4-93

video.BoundaryTracer class

See Also video.EdgeDetector | video.ConnectedComponentLabeler |
video.Autothresholder

4-94

video.BoundaryTracer.clone

Purpose Create boundary tracer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a BoundaryTracer System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-95

video.BoundaryTracer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-96

video.BoundaryTracer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-97

video.BoundaryTracer.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the BoundaryTracer
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-98

video.BoundaryTracer.step

Purpose Trace boundaries of objects in binary image

Syntax Y = step(H,X,STARTPTS)
[Y,CNT] = step(H,...)

Description Y = step(H,X,STARTPTS) traces the boundaries of objects in the binary
image X . The starting points for searching the boundary points is
specified by the second 2-by-N element input matrix STARTPTS. Each
column specifies the zero-based row and column coordinates of the
initial point on the object boundary, and N represents the number of
objects. The output Y is a 2M-by-N matrix, where each column contains
the zero-based row and column coordinates of the boundary pixels. M
represents the maximum number of boundary pixels for each object, as
specified by the MaximumPixelCount property.

[Y,CNT] = step(H,...) outputs CNT, a 1-by-N vector which indicates
the number of boundary points for every boundary specified by the
starting points. This applies when you set the PixelCountOutputPort
property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-99

video.ChromaResampler class

Purpose Downsample or upsample chrominance components of images

Description The ChromaResampler object downsamples or upsample chrominance
components of images.

Construction H = video.ChromaResampler returns a chroma resampling System
object, H, that downsamples or upsamples chroma components of a
YCbCr signal to reduce the bandwidth and/or storage requirements.

H = video.ChromaResampler(’PropertyName’,PropertyValue,...)
returns a chroma resampling System object, H, with each specified
property set to the specified value.

Properties Resampling

Resampling format

Specify the resampling format as follows:

• To downsample the chrominance components of images, set
this property to one of the following:

[4:4:4 to 4:2:2]
[4:4:4 to 4:2:0 (MPEG1)]
[4:4:4 to 4:2:0 (MPEG2)]
[4:4:4 to 4:1:1]
[4:2:2 to 4:2:0 (MPEG1)]
[4:2:2 to 4:2:0 (MPEG2)]

• To upsample the chrominance components of images, set this
property to one of the following:

[4:2:2 to 4:4:4]
[4:2:0 (MPEG1) to 4:4:4]
[4:2:0 (MPEG2) to 4:4:4]
[4:1:1 to 4:4:4]
[4:2:0 (MPEG1) to 4:2:2]
[4:2:0 (MPEG2) to 4:2:2]

4-100

video.ChromaResampler class

The default value of this property is [4:4:4 to 4:2:2]

InterpolationFilter

Method used to approximate missing values

Specify the interpolation method used to approximate the
missing chrominance values as Pixel replication, Linear.
If this property is set to Linear, the System object uses linear
interpolation to calculate the missing values. If this property
is set to Pixel replication, the System object replicates the
chrominance values of the neighboring pixels to create the
upsampled image. This property applies when you upsample the
chrominance values. The default value of this property is Linear.

AntialiasingFilterSource

Lowpass filter used to prevent aliasing

Specify the lowpass filter used to prevent aliasing as Auto,
Property, or None. If this property is set to Auto, the System
object uses a built-in lowpass filter. If this property is set
to Property, the coefficients of the filters are specified
by the properties HorizontalFilterCoefficients and/or
VerticalFilterCoefficients. If this property is set to None,
the System object does not filter the input signal. This property
applies when you downsample the chrominance values. The
default value of this property is Auto.

HorizontalFilterCoefficients

Horizontal filter coefficients

Specify the filter coefficients to apply to the input signal.
This property applies when you set the Resampling property
to one of: [4:4:4 to 4:2:2], [4:4:4 to 4:2:0 (MPEG1)],
[4:4:4 to 4:2:0 (MPEG2)], or [4:4:4 to 4:1:1] and the
AntialiasingFilterSource property to Property. The default
value of this property is [0.2 0.6 0.2].

VerticalFilterCoefficients

4-101

video.ChromaResampler class

Vertical filter coefficients

Specify the filter coefficients to apply to the input signal. This
property applies when you set the Resampling property to one
of [4:4:4 to 4:2:0 (MPEG1)], [4:4:4 to 4:2:0 (MPEG2)],
[4:2:2 to 4:2:0 (MPEG1)], [4:2:2 to 4:2:0 (MPEG2)] and
the AntialiasingFilterSource property to Property. The
default value of this property is [0.5 0.5].

TransposedInput

Input is row-major format

Set this property to true when the input contains data elements
from the first row first, then data elements from the second row
second, and so on through the last row. Otherwise, the System
object assumes that the input data is stored in column-major
format. The default value of this property is false.

Methods clone Create chroma resampling object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Resample input chrominance
components

Examples Resample the chrominance components of an image.

H = video.ChromaResampler;
hcsc = video.ColorSpaceConverter;
x = imread('peppers.png');

4-102

video.ChromaResampler class

x1 = step(hcsc, x);
[Cb, Cr] = step(H, x1(:,:,2), x1(:,:,3));

Algorithm This object implements the algorithm, inputs, and outputs described
on the Chroma Resampling block reference page. The object properties
correspond to the block parameters.

See Also video.ColorSpaceConverter

4-103

video.ChromaResampler.clone

Purpose Create chroma resampling object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a ChromaResampler System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-104

video.ChromaResampler.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-105

video.ChromaResampler.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-106

video.ChromaResampler.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
ChromaResampler System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-107

video.ChromaResampler.step

Purpose Resample input chrominance components

Syntax [Cb1,Cr1] = step(H,Cb,Cr)

Description [Cb1,Cr1] = step(H,Cb,Cr) resamples the input chrominance
components Cb and Cr and returns Cb1 and Cr1 as the resampled
outputs.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-108

video.ColorSpaceConverter class

Purpose Convert color information between color spaces

Description The ColorSpaceConverter object converts color information between
color spaces.

Construction H = video.ColorSpaceConverter returns a System object, H, that
converts color information from RGB to YCbCr using conversion
standard Rec. 601 (SDTV).

H =
video.ColorSpaceConverter(’PropertyName’,PropertyValue,...)
returns a color space conversion object, H, with each specified
property set to the specified value.

Properties Conversion

Color space input/output conversion

Specify the color spaces to convert between as the following:

[RGB to YCbCr]
[YCbCr to RGB]
[RGB to intensity]
[RGB to HSV]
[HSV to RGB]
[sRGB to XYZ]
[XYZ to sRGB]
[sRGB to L*a*b*]
[L*a*b* to sRGB]

Note that the R, G, B and Y (luma) signal components in the above
color space conversions are gamma corrected. The default value
for this property is [RGB to YCbCr].

WhitePoint

Reference white point

Specify the reference white point as D50, D55, or D65. This
property applies when you set the Conversion property to [sRGB

4-109

video.ColorSpaceConverter class

to L*a*b*] or [L*a*b* to sRGB]. The default value for this
property is D65.

ConversionStandard

Standard for RGB to YCbCr conversion

Specify the standard used to convert the values between the RGB
and YCbCr color spaces as Rec. 601 (SDTV), or Rec. 709
(HDTV). This property applies when you set the Conversion
property to [RGB to YCbCr] or [YCbCr to RGB]. The default
value for this property is Rec. 601 (SDTV).

ScanningStandard

Scanning standard for RGB to YCbCr conversion

Specify the scanning standard used to convert the values
between the RGB and YCbCr color spaces as [1125/60/2:1],
or [1250/50/2:1]. This property applies when you set the
ConversionStandard property to Rec. 709 (HDTV). The default
value for this property is [1125/60/2:1].

Methods clone Create color space converter
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Convert color space of input
image

4-110

video.ColorSpaceConverter class

Examples Convert an image from an RGB to an intensity color space.

i1 = imread('pears.png');
imshow(i1);
hcsc = video.ColorSpaceConverter;
hcsc.Conversion = 'RGB to intensity';
i2 = step(hcsc, i1);
pause(2);
imshow(i2);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Color Space Conversion block reference page. The object properties
correspond to the block parameters, except for:

• The Image signal block parameter allows you to specify whether
the block accepts the color video signal as One multidimensional
signal or Separate color signals. The object does not have a
property that corresponds to the Image signal block parameter.
You must always provide the input image to the step method of the
object as a single multidimensional signal.

See Also video.Autothresholder

4-111

video.ColorSpaceConverter.clone

Purpose Create color space converter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a ColorSpaceConverter System object C, with
the same property values as H. The clone method creates a new
unlocked object.

4-112

video.ColorSpaceConverter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-113

video.ColorSpaceConverter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-114

video.ColorSpaceConverter.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
ColorSpaceConverter System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-115

video.ColorSpaceConverter.step

Purpose Convert color space of input image

Syntax C2 = step(H,C1)

Description C2 = step(H,C1) converts a multidimensional input image C1 to a
multidimensional output image C2 . C1 and C2 are images in different
color spaces.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-116

video.ConnectedComponentLabeler class

Purpose Label and count the connected regions in a binary image

Description The ConnectedComponentLabeler object labels and counts the
connected regions in a binary image. The System object can output a
label matrix, where pixels equal to 0 represent the background, pixels
equal to 1 represent the first object, pixels equal to 2 represent the
second object, and so on. The object can also output a scalar that
represents the number of labeled objects.

Construction H = video.ConnectedComponentLabeler returns a System object, H,
that labels and counts connected regions in a binary image.

H =
video.ConnectedComponentLabeler(’PropertyName’,PropertyValue,...)
returns a label System object, H, with each property set to
the specified value.

Properties Connectivity

Which pixels are connected to each other

Specify which pixels are connected to each other as either 4 or 8.
If a pixel should be connected to the pixels on the top, bottom, left,
and right, set this property to 4. If a pixel should be connected to
the pixels on the top, bottom, left, right, and diagonally, set this
property to 8. The default value of this property is 8.

LabelMatrixOutputPort

Enable output of label matrix

Set to true to output the label matrix. Both the
LabelMatrixOutputPort and LabelCountOutputPort properties
cannot be set to false at the same time. The default value of this
property is true.

LabelCountOutputPort

Enable output of number of labels

4-117

video.ConnectedComponentLabeler class

Set to true to output the number of labels. Both the
LabelMatrixOutputPort and LabelCountOutputPort properties
cannot be set to false at the same time. The default value of this
property is true.

OutputDataType

Output data type

Set the data type of the output to one of Automatic, uint32 ,
uint16, uint8. If this property is set to Automatic, the System
object determines the appropriate data type for the output. If it is
set to uint32, uint16, or uint8, the data type of the output is 32-,
16-, or 8-bit unsigned integers, respectively. The default value
for this property is Automatic.

OverflowAction

Behavior if number of found objects exceeds data type size of
output

Specify the System object’s behavior if the number of found objects
exceeds the maximum number that can be represented by the
output data type as Use maximum value of the output data
type, or Use zero . If this property is set to Use maximum value
of the output data type, the remaining regions are labeled
with the maximum value of the output data type. If this property
is set to Use zero, the remaining regions are labeled with zeroes.
This property applies when you set the OutputDataType property
to uint16 or uint8. The default value for this property is Use
maximum value of the output data type.

Methods clone Create connected component
labeler object with same property
values

getNumInputs Number of expected inputs to
step method

4-118

video.ConnectedComponentLabeler class

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Label and count connected
regions in input

Examples Label connected regions in an image.

img = logical([0 0 0 0 0 0 0 0 0 0 0 0 0; ...
0 1 1 1 1 0 0 0 0 0 0 1 0; ...
0 1 1 1 1 1 0 0 0 0 1 1 0; ...
0 1 1 1 1 1 0 0 0 1 1 1 0; ...
0 1 1 1 1 0 0 0 1 1 1 1 0; ...
0 0 0 0 0 0 0 1 1 1 1 1 0; ...
0 0 0 0 0 0 0 0 0 0 0 0 0])
hlabel = video.ConnectedComponentLabeler;
hlabel.LabelMatrixOutputPort = true;
hlabel.LabelCountOutputPort = false;
labeled = step(hlabel, img)

Algorithm This object implements the algorithm, inputs, and outputs described
on the Label block reference page. The object properties correspond to
the block parameters, except for:

• The LabelCountOutputPort and LabelMatrixOutputPort object
properties correspond to the Output block parameter.

See Also video.AutoThresholder | video.BlobAnalysis

4-119

video.ConnectedComponentLabeler.clone

Purpose Create connected component labeler object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a ConnectedComponentLabeler System object
C, with the same property values as H. The clone method creates a
new unlocked object.

4-120

video.ConnectedComponentLabeler.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-121

video.ConnectedComponentLabeler.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-122

video.ConnectedComponentLabeler.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
ConnectedComponentLabeler System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-123

video.ConnectedComponentLabeler.step

Purpose Label and count connected regions in input

Syntax L = step(H,BW)
COUNT = step(H,BW)
[L,COUNT] = step(H,BW)

Description L = step(H,BW) outputs the matrix, L for input binary image BW when
the LabelMatrixOutputPort property is true.

COUNT = step(H,BW) outputs the number of distinct,
connected regions found in input binary image BW when you set the
LabelMatrixOutputPort property to false and LabelCountOutputPort
property to true.

[L,COUNT] = step(H,BW) outputs both the L matrix and number
of distinct, connected regions, COUNT when you set both the
LabelMatrixOutputPort property and LabelCountOutputPort to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-124

video.ContrastAdjuster class

Purpose Adjust image contrast by linear scaling

Description The ContrastAdjuster object adjusts image contrast by linearly scaling
pixel values between upper and lower limits. Pixel values that are above
or below this range are saturated to the upper or lower limit values.

Construction H = video.ContrastAdjuster returns a contrast adjustment object, H,
that adjusts the contrast of an image by linearly scaling the pixel values
between the maximum and minimum values of the input data.

H = video.ContrastAdjuster('PropertyName',PropertyValue,
...) returns a contrast adjustment object, H, with each property set to
the specified value.

Properties InputRange

How to specify lower and upper input limits

Specify how to determine the lower and upper input limits as Full
input data range [min max], Custom, or Range determined by
saturating outlier pixels. The default value for this property
is Full input data range [min max].

CustomInputRange

Lower and upper input limits

Specify the lower and upper input limits as a two-element vector
of real numbers, where the first element corresponds to the
lower input limit, and the second element corresponds to the
upper input limit. This property applies only when you set the
InputRange property to Custom. This property is tunable.

PixelSaturationPercentage

Percentage of pixels to consider outliers

Specify the percentage of pixels to consider outliers, as a
two-element vector. The contrast adjustment object calculates
the lower input limit such that the percentage of pixels with
values smaller than the lower limit is at most the value of the

4-125

video.ContrastAdjuster class

first element. Similarly, the object calculates the upper input
limit such that the percentage of pixels with values greater than
the upper limit is at least the value of the second element. This
property only applies when you set the InputRange property
to Range determined by saturating outlier pixels. The
default value of this property is [1 1].

HistogramNumBins

Number of histogram bins

Specify the number of histogram bins used to calculate the scaled
input values. The default value of this property is 256.

OutputRangeSource

How to specify lower and upper output limits

Specify how to determine the lower and upper output limits as
Auto or Property. If you set the value of this property to Auto, the
object uses the minimum value of the input data type as the lower
output limit and the maximum value of the input data type as the
upper output limit. The default value for this property is Auto.

OutputRange

Lower and upper output limits

Specify the lower and upper output limits as a two-element
vector of real numbers, where the first element corresponds to
the lower output limit and the second element corresponds to
the upper output limit. This property only applies when you set
the OutputRangeSource property to Property. This property is
tunable.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

4-126

video.ContrastAdjuster class

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value for this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap

ProductInputDataType

Product input word and fraction lengths

Specify the product input fixed-point data type as Custom.

CustomProductInputDataType

Product input word and fraction lengths

Specify the product input fixed-point type as a scaled numerictype
object with a Signedness of Auto. The default value of this
property is numerictype([],32,16).

ProductHistogramDataType

Product histogram word and fraction lengths

Specify the product histogram fixed-point data type as Custom.
This property only applies when you set the InputRange property
to Range determined by saturating outlier pixels.

CustomProductHistogramDataType

Product histogram word and fraction lengths

Specify the product histogram fixed-point type as a scaled
numerictype object with a Signedness of Auto. This property
only applies when you set the InputRange property to Range
determined by saturating outlier pixels. The default value
of this property is numerictype([],32,16).

4-127

video.ContrastAdjuster class

Methods clone Create contrast adjuster with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Adjust contrast in input image

Examples Use contrast adjuster to enhance image quality:

hcontadj = video.ContrastAdjuster;
x = imread('pout.tif');
y = step(hcontadj, x);
imshow(x); title('Original Image');
figure, imshow(y);
title('Enhanced image after contrast adjustment');

Algorithm This object implements the algorithm, inputs, and outputs described on
the Contrast Adjustment block reference page. The object properties
correspond to the block parameters.

See Also video.HistogramEqualizer

4-128

video.ContrastAdjuster.clone

Purpose Create contrast adjuster with same property values

Syntax C = clone(H)

Description C = clone(H) creates an instance of the current contrast adjuster
object with the same property values. The clone method creates a new
unlocked object

4-129

video.ContrastAdjuster.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-130

video.ContrastAdjuster.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-131

video.ContrastAdjuster.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
ContrastAdjuster System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-132

video.ContrastAdjuster.step

Purpose Adjust contrast in input image

Syntax Y = step(H,X)

Description Y = step(H,X) performs contrast adjustment of input X and returns
the adjusted image Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-133

video.Convolver2D class

Purpose Compute 2-D discrete convolution of two input matrices

Description The Convolver2D object computes 2-D discrete convolution of two input
matrices.

Construction H = video.Convolver2D returns a System object, H, that performs
two-dimensional convolution on two inputs.

H = video.Convolver2D(’PropertyName’,PropertyValue,...)
returns a 2-D convolution System object, H, with each specified property
set to the specified value.

Properties OutputSize

Specify dimensions of output

This property controls the size of the output scalar, vector, or
matrix produced as a result of the convolution between the two
inputs. This property can be set to one of Full, Same as first
input, or Valid. If this property is set to Full, the output is the
full two-dimensional convolution with (Ma+Mb-1, Na+Nb-1). If
you set this property to Same as first input, the output is the
central part of the convolution with the same dimensions as the
first input. If you set this property to Valid, the output consists
of only those parts of the convolution that are computed without
the zero-padded edges of any input. This output has dimensions
(Ma-Mb+1, Na-Nb+1). (Ma, Na) is the size of the first input
matrix and (Mb, Nb) is the size of the second input matrix. The
default value of this property is Full.

Normalize

Whether to normalize the output

Set to true to normalize the output. The default value of this
property is false.

4-134

video.Convolver2D class

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap.

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as first
input, or Custom. The default value of this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the ProductDataType property to Custom. The default value of
this property is numerictype([],32,10).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Same as first input, Custom. The default value of
this property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

4-135

video.Convolver2D class

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the AccumulatorDataType property to Custom. The default
value of this property is numerictype([],32,10).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as first input,
or Custom. The default value of this property is Custom.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies when you set
the OutputDataType property to Custom. The default value of this
property is numerictype([],32,12).

Methods clone Create 2-D convolver object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute 2-D convolution of input
matrices

Examples Compute the 2D convolution of two matrices.

hconv2d = video.Convolver2D;
x1 = [1 2;2 1];

4-136

video.Convolver2D class

x2 = [1 -1;-1 1];
y = step(hconv2d, x1, x2)

Algorithm This object implements the algorithm, inputs, and outputs described
on the 2-D Convolution block reference page. The object properties
correspond to the block parameters.

See Also video.Crosscorrelator2D | video.AutoCorrelator2D

4-137

video.Convolver2D.clone

Purpose Create 2-D convolver object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a Convolver2D System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-138

video.Convolver2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-139

video.Convolver2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-140

video.Convolver2D.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the Convolver2D
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-141

video.Convolver2D.step

Purpose Compute 2-D convolution of input matrices

Syntax Y = step(HCONV2D,X1,X2)

Description Y = step(HCONV2D,X1,X2) computes 2-D convolution of input matrices
X1 and X2.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-142

video.CornerDetector class

Purpose Corner metric matrix and corner detector

Description The CornerDetector object calculates a corner metric matrix and
detects corners in images.

Construction H = video.CornerDetector returns a corner detector object, H, that
finds corners in an image based on pixels with the largest corner metric
values.

H = video.CornerDetector('PropertyName',PropertyValue, ...)
returns a corner detector object, H, with each property set to the
specified value.

Properties Method

Method to find corner values

Specify the method to find the corner values as Harris corner
detection (Harris & Stephens) , Minimum eigenvalue
(Shi & Tomasi), or Local intensity comparison (Rosen &
Drummond). The default value for this property is Harris corner
detection (Harris & Stephens).

Sensitivity

Sensitivity factor to detect sharp corners

Specify the sensitivity factor, k, used in the Harris corner detection
algorithm as a real number such that 0 < k < 1. The smaller the
value of k, the more likely the algorithm detects sharp corners.
This property only applies when you set the Method property to
Harris corner detection (Harris & Stephens). The default
value of this property is 0.04. This property is tunable.

SmoothingFilterCoefficients

Smooth filter coefficients

Specify the filter coefficients for the separable smoothing filter as
a real-valued vector. For more information, see fspecial. This
property applies only when you set the Method property to either

4-143

video.CornerDetector class

Harris corner detection (Harris & Stephens), or Minimum
eigenvalue (Shi & Tomasi). The default value of this property
is the output of fspecial('gaussian', 1 5, 1.5).

IntensityThreshold

Intensity comparison threshold

Specify the intensity threshold value used to find valid bright
or dark surrounding pixels as a positive real number. This
property applies only when you set the Method property to Local
intensity comparison (Rosen & Drummond). The default value
of this property is 0.1. This property is tunable.

MaximumAngleThreshold

Maximum valid corner angle in degrees

Specify the maximum angle in degrees considered a corner
as 22.5, 45.0, 67.5, 90.0, 112.5, 135.0, or 157.5. This
property only applies when you set the Method property to Local
intensity comparison (Rosen & Drummond). The default value
of this property is 157.5. This property is tunable.

CornerLocationOutputPort

Enables output of the corner location

Set this property to true to output the corner location. This
property and the MetricMatrixOutputPort property cannot both
be set to false. The default value for this property is true.

MetricMatrixOutputPort

Enables output of the corner metric matrix

Set this property to true to output the corner metric matrix. This
property and the CornerLocationOutputPort property cannot
both be set to false. The default value for this property is false.

MaximumCornerCount

Maximum number of corners to detect

4-144

video.CornerDetector class

Specify the maximum number of corners to detect as a
positive integer. This property only applies when you set the
CornerLocationOutputPort property to true. The default value
of this property is 20.

CornerThreshold

Minimum metric value that indicates a corner

Specify the minimum metric value that indicates a corner as a
positive real number. This property applies only when you set the
CornerLocationOutputPort property to true. The default value
of this property is 0.0005. This property is tunable.

NeighborhoodSize

Size of suppressed region around detected corner

Specify the size of the neighborhood around the corner metric
value over which the object zeros out the values. The neighborhood
size is a two element vector of positive odd integers, [r c].
Here r is the number of rows in the neighborhood and c is the
number of columns. This property only applies when you set the
CornerLocationOutputPort property to true. The default value
of this property is [11 11].

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap, or Saturate. The default
value of this property is Wrap.

4-145

video.CornerDetector class

CoefficientsDataType

Coefficients word and fraction lengths

Specify the coefficients fixed-point data type as Same word
length as input, or Custom. This property applies only when the
Method property is not Local intensity comparison (Rosen &
Drummond). The default value of this property is Custom.

CustomCoefficientsDataType

Coefficients word and fraction lengths

Specify the coefficients fixed-point type as a signed numerictype
object with a Signedness of Auto. This property applies only when
the Method property is not Local intensity comparison (Rosen
& Drummond) and the CoefficientsDataType property is Custom.
The default value of this property is numerictype([],16).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as input, or
Custom. This property is applicable when the Method property is
not Local intensity comparison (Rosen & Drummond). The
default value of this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when the
Method property is not Local intensity comparison (Rosen &
Drummond) and the ProductDataType property is Custom. The
default value of this property is numerictype([],32,0).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as input,
or Custom. The default value of this property is Custom.

4-146

video.CornerDetector class

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled
numerictype object. This property applies only when the
AccumulatorDataType property is Custom. The default value of
this property is numerictype([],32,0).

MemoryDataType

Memory word and fraction lengths

Specify the memory fixed-point data type as Same as input,
Custom. This property applies when the Method property is
not Local intensity comparison (Rosen & Drummond). The
default value of this property is Custom.

CustomMemoryDataType

Memory word and fraction lengths

Specify the memory fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies only when
the Method property is not Local intensity comparison (Rosen
& Drummond) and the MemoryDataType property is Custom. The
default value of this property is numerictype([],32,0).

MetricOutputDataType

Metric output word and fraction lengths

Specify the metric output fixed-point data type as Same as
accumulator, Same as input, or Custom. The default value of
this property is Same as accumulator.

CustomMetricOutputDataType

Metric output word and fraction lengths

Specify the metric output fixed-point type as a signed, scaled
numerictype object with a Signedness of Auto. This property
applies only when the MetricOutputDataType property is Custom.
The default value of this property is numerictype([],32,0).

4-147

video.CornerDetector class

Methods clone Create corner detector with same
property values

getNumInputs Return number of expected inputs
to step method

getNumOutputs Return number of outputs of step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Detect corners in input image

Examples Detect corners in an input image:

x = im2single(imread('circbw.tif'));
hcornerdet = video.CornerDetector(...
'Method', ...,

'Local intensity comparison (Rosen & Drummond)', ...
'MaximumAngleThreshold', '135.0', ...
'MaximumCornerCount', 200);
[pts, cnt] = step(hcornerdet, x);
hdrawmarkers = video.MarkerInserter(...
'Shape', 'Circle', ...
'BorderColor', 'Custom', ...
'CustomBorderColor', [1 0 0]);
y = step(hdrawmarkers, cat(3,x,x,x), pts);
imshow(y); title ('Corners detected in a binary image');

Algorithm This object implements the algorithm, inputs, and outputs described
on the Corner Detection block reference page. The object properties
correspond to the block parameters, except for:

• The CornerLocationOutput and MetricMatrixOutputPort are
logical properties for the object. These properties correspond to the
Output block parameter.

4-148

video.CornerDetector class

See Also video.LocalMaximaFinder | video.EdgeDetector |
video.MarkerInserter

4-149

video.CornerDetector.clone

Purpose Create corner detector with same property values

Syntax C = clone(H)

Description C = clone(H) creates a corner detector object, C, with the same
property values. The clone method creates a new unlocked object.

4-150

video.CornerDetector.getNumInputs

Purpose Return number of expected inputs to step method

Syntax getNumInputs(H)

Description getNumInputs(H) returns the number of expected inputs to the step
method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-151

video.CornerDetector.getNumOutputs

Purpose Return number of outputs of step method

Syntax getNumOutputs(H)

Description getNumOutputs(H) returns the number of outputs from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-152

video.CornerDetector.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax isLocked(H)

Description isLocked(H) returns the locked state of the corner detector.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-153

video.CornerDetector.step

Purpose Detect corners in input image

Syntax [LOC, CNT] = step(H,I)
METRIC = step(H,I)
[LOC,CNT,METRIC] = step(H,I)

Description [LOC, CNT] = step(H,I) finds the corners in input image I. LOC is
a 2-by-N matrix that represents the locations of the corners, where
N is the maximum number of corners in image I specified by the
MaximumCornerCount property. CNT represents the number of detected
corners in the image.

METRIC = step(H,I) returns a matrix with corner metric values,
METRIC , when the MetricMatrixOutputPort property is true. The size
of metric matrix is the same as that of the input image.

[LOC,CNT,METRIC] = step(H,I) returns the locations of the corners
in LOC , the number of detected corners in CNT , and the corner metric
matrix in METRIC , when both the CornerLocationOutputPort and
MetricMatrixOutputPort properties are true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-154

video.Crosscorrelator2D class

Purpose Compute 2-D cross-correlation of two input matrices

Description The Crosscorrelator2D object computes 2-D cross-correlation of two
input matrices.

Construction H = video.Crosscorrelator2D returns a System object, H, that
performs two-dimensional cross-correlation between two inputs.

H =
video.Crosscorrelator2D(’PropertyName’,PropertyValue,...)
returns a 2-D cross correlation System object, H, with each specified
property set to the specified value.

Properties OutputSize

Specify dimensions of output

This property controls the size of the output scalar, vector, or
matrix produced as a result of the cross-correlation between the
two inputs. This property can be set to one of Full, Same as
first input, Valid. If this property is set to Full, the output
is the full two-dimensional cross-correlation with dimensions
(Ma+Mb-1, Na+Nb-1). if this property is set to same as first
input, the output is the central part of the cross-correlation with
the same dimensions as the first input. if this property is set to
valid, the output is only those parts of the cross-correlation that
are computed without the zero-padded edges of any input. this
output has dimensions (Ma-Mb+1, Na-Nb+1). (Ma, Na) is the size
of the first input matrix and (Mb, Nb) is the size of the second
input matrix. The default value for this property is Full.

Normalize

Normalize output

Set this property to true to normalize the output. If you
set this property to true, the object divides the output by

I I I Ip p1 1 2 2•() × •()∑ ∑ , where I p1 is the portion of the input

4-155

video.Crosscorrelator2D class

matrix, I1 that aligns with the input matrix, I2 . This property
must be set to false for fixed-point inputs. The default value of
this property is false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap.

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as first
input, Custom. The default value of this property is Same as
first input.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the ProductDataType property to Custom. The default value of
this property is numerictype([],32,30).

AccumulatorDataType

Accumulator word and fraction lengths

4-156

video.Crosscorrelator2D class

Specify the accumulator fixed-point data type as Same as
product, Same as first input, Custom.The default value for
this property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the AccumulatorDataType property to Custom. The default
value of this property is numerictype([],32,30).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as first input,
Custom. The default value of this property is Same as first
input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies when you set
the OutputDataType property to Custom. The default value of this
property is numerictype([],16,15).

Methods clone Create 2-D cross correlator object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

4-157

video.Crosscorrelator2D class

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute 2-D correlation of input
matrices

Examples Compute the 2-D correlation of two matrices.

hcorr2d = video.Crosscorrelator2D;
x1 = [1 2;2 1];
x2 = [1 -1;-1 1];
y = step(hcorr2d,x1,x2);

Algorithm This object implements the algorithm, inputs, and outputs described
on the 2-D Correlation block reference page. The object properties
correspond to the block parameters.

See Also video.Autocorrelator2D | signalblks.Crosscorrelator

4-158

video.Crosscorrelator2D.clone

Purpose Create 2-D cross correlator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a Crosscorrelator2D System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-159

video.Crosscorrelator2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, Nto the
step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-160

video.Crosscorrelator2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-161

video.Crosscorrelator2D.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
Crosscorrelator2D System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-162

video.Crosscorrelator2D.step

Purpose Compute 2-D correlation of input matrices

Syntax Y = step(H,X1,X2)

Description Y = step(H,X1,X2) computes 2D correlation of input matrices X1 and
X2.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-163

video.DCT2D class

Purpose Compute 2-D discrete cosine transform

Description The DCT2D object computes a 2-D discrete cosine transform. The number
of rows and columns of the input matrix must be a power of 2.

Construction H = video.DCT2D returns a discrete cosine transform System object,
H, used to compute the two-dimensional discrete cosine transform (2-D
DCT) of a real input signal.

H = video.DCT2D(’PropertyName’,PropertyValue,...) returns a
discrete cosine transform System object, H, with each specified property
set to the specified value.

Properties SineComputation

Specify how the System object computes sines and cosines as
Trigonometric function, or Table lookup. This property must
be set to Table lookup for fixed-point inputs.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when
you set the SineComputation to Table lookup. The default value
of this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies when you set the SineComputation to Table lookup. The
default value of this property is Wrap.

SineTableDataType

Sine table word-length designation

4-164

video.DCT2D class

Specify the sine table fixed-point data type as Same word length
as input, or Custom. This property applies when you set the
SineComputation to Table lookup. The default value of this
property is Same word length as input.

CustomSineTableDataType

Sine table word length

Specify the sine table fixed-point type as a signed, unscaled
numerictype object. This property applies when you set
the SineComputation to Table lookup and you set the
SineTableDataType property to Custom. The default value of this
property is numerictype(true,16).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Internal rule, Same
as first input, or Custom. This property applies when you set
the SineComputation to Table lookup. The default value of this
property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a signed, scaled
numerictype object. This property applies when you set the
SineComputation to Table lookup, and the ProductDataType
property to Custom. The default value of this property is
numerictype(true,32,30).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Internal
rule, Same as input,Same as product, Same as first input,
Custom. This property applies when you set the SineComputation
property to Table lookup. The default value of this property is
Internal rule.

4-165

video.DCT2D class

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a signed, scaled
numerictype object. This property applies when you set the
SineComputation to Table lookup, and AccumulatorDataType
property to Custom. The default value of this property is
numerictype(true,32,30).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Internal rule, Same
as first input, or Custom. This property applies when you set
the SineComputation to Table lookup. The default value of this
property is Custom.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a signed, scaled
numerictype object. This property applies when you set the
SineComputation to Table lookup, and the OutputDataType
property to Custom. The default value of this property is
numerictype(true,16,15).

Methods clone Create 2-D discrete cosine
transform object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

4-166

video.DCT2D class

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute 2-D discrete cosine
transform on input

Examples Use 2-D discrete cosine transform to analyze the energy content in an
image. Set the DCT coefficients lower than a threshold of 0, and then
reconstruct the image using the 2-D inverse discrete cosine transform
object.

hdct2d = video.DCT2D;
I = double(imread('cameraman.tif'));
J = step(hdct2d, I);
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar

hidct2d = video.IDCT2D;
J(abs(J) < 10) = 0;
It = step(hidct2d, J);
figure, imshow(I, [0 255]), title('Original image')
figure, imshow(It,[0 255]), title('Reconstructed image')

Algorithm This object implements the algorithm, inputs, and outputs described
on the 2-D DCT block reference page. The object properties correspond
to the block parameters.

See Also video.IDCT2D | signalblks.DCT | signalblks.IDCT

4-167

video.DCT2D.clone

Purpose Create 2-D discrete cosine transform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a DCT2D System object C, with the same property
values as H. The clone method creates a new unlocked object.

4-168

video.DCT2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-169

video.DCT2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-170

video.DCT2D.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the DCT2D System
object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-171

video.DCT2D.step

Purpose Compute 2-D discrete cosine transform on input

Syntax Y = step(H,X)

Description Y = step(H,X) computes the 2-D DCT Y of input X.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-172

video.Deinterlacer class

Purpose Remove motion artifacts by deinterlacing input video signal

Description The Deinterlacer object removes motion artifacts by deinterlacing
input video signal.

Construction H = video.Deinterlacer returns a deinterlacing System object, H,
that removes motion artifacts from images composed of weaved top and
bottom fields of an interlaced signal.

H = video.Deinterlacer(’PropertyName’,PropertyValue,...)
returns a deinterlacing System object, H, with each specified property
set to the specified value.

Properties Method

Method used to deinterlace input video

Specify how the object deinterlaces the input video as Line
repetition, Linear interpolation, Vertical temporal
median filtering. The default value for this property is Line
repetition.

TransposedInput

Indicate if input data is in row-major order

Set this property to true to assume that the input buffer contains
data elements from the first row first, then data elements from
the second row second, and so on through the last row. The
default value of this property is false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when

4-173

video.Deinterlacer class

you set the Method property to Linear Interpolation. The
default value of this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This
property applies when you set the Method property to Linear
Interpolation. The default value of this property is Wrap

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as input,
Custom. This property applies when you set the Method property
to Linear Interpolation. The default value for this property
is Custom.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property is applicable
when the AccumulatorDataType property is Custom. This
property applies when you set the Method property to
Linear Interpolation. The default value of this property is
numerictype([],12,3).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as input,
Custom. This property applies when you set the Method property
to Linear Interpolation. The default value of this property
is Same as input.

CustomOutputDataType

Output word and fraction lengths

4-174

video.Deinterlacer class

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property is applicable when the
OutputDataType property is Custom. This property applies when
you set the Method property to Linear Interpolation. The
default value of this property is numerictype([],8,0).

Methods clone Create deinterlacer object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Deinterlace input video signal

Examples Use deinterlacing to remove motion artifacts from an input image.

hdint = video.Deinterlacer;
x = imread('vipinterlace.png');
y = step(hdint, x);
imshow(x); title('Original Image');
figure, imshow(y); title('Image after deinterlacing');

Algorithm This object implements the algorithm, inputs, and outputs described
on the Deinterlacing block reference page. The object properties
correspond to the block parameters.

See Also video.CornerDetector

4-175

video.Deinterlacer.clone

Purpose Create deinterlacer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a Deinterlacer System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-176

video.Deinterlacer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-177

video.Deinterlacer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-178

video.Deinterlacer.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the Deinterlacer
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-179

video.Deinterlacer.step

Purpose Deinterlace input video signal

Syntax Y = step(H,X)

Description Y = step(H,X) deinterlaces input X according to the algorithm set in
the Method property.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-180

video.DemosaicInterpolator class

Purpose Demosaic Bayer’s format images

Description The DemosaicInterpolator object demosaics Bayer’s format images.
The alignment is identified as the sequence of R, G and B pixels in the
top-left four pixels of the image in row-wise order.

Construction H = video.DemosaicInterpolator returns a System object, H, that
performs demosaic interpolation on an input image in Bayer format
with the specified alignment.

H =
video.DemosaicInterpolator(’PropertyName’,PropertyValue,...)
returns a System object, H, with each specified property set to
the specified value.

Properties Method

Interpolation algorithm

Specify the algorithm the object uses to calculate the missing color
information as Bilinear or Gradient-corrected linear. The
default value for this property is Gradient-corrected linear.

SensorAlignment

Alignment of the input image

Specify the sequence of R, G and B pixels that correspond to the
2-by-2 block of pixels in the top left corner of the image. It can be
set to one of RGGB , GRBG, GBRG, or BGGR. The sequence should be
specified in left-to-right, top-to-bottom order. The default value
for this property is RGGB.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

4-181

video.DemosaicInterpolator class

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value for this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value for this property is Saturate.

ProductDataType

Product output word and fraction lengths

Specify the product output fixed-point data type as Same as
input, Custom. The default value for this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the ProductDataType property to Custom. The default value of
this property is numerictype([],32,10).

AccumulatorDataType

Data type of the accumulator

Specify the accumulator fixed-point data type as Same as
product, Same as input, or Custom. The default value for this
property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the AccumulatorDataType property to Custom. The default
value of this property is numerictype([],32,10).

4-182

video.DemosaicInterpolator class

Methods clone Create demosaic interpolator
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Perform demosaic operation on
input

Examples Demosaic a Bayer pattern encoded-image photographed by a camera
with a sensor alignment of ’BGGR’.

x = imread('mandi.tif');
hdemosaic = ...

video.DemosaicInterpolator('SensorAlignment', 'BGGR');
y = step(hdemosaic, x);
imshow(x,'InitialMagnification',20);
title('Original Image');
figure, imshow(y,'InitialMagnification',20);
title('RGB image after demosaic');

Algorithm This object implements the algorithm, inputs, and outputs described on
the Demosaic block reference page. The object properties correspond to
the block parameters, , except for:

• The Output image signal block parameter allows you to specify
whether the block outputs the image as One multidimensional
signal or Separate color signals. The object does not have
a property that corresponds to the Output image signal block

4-183

video.DemosaicInterpolator class

parameter. The object always outputs the image as an M-by-N-by-P
color video signal.

See Also video.GammaCorrector

4-184

video.DemosaicInterpolator.clone

Purpose Create demosaic interpolator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a DemosaicInterpolator System object C,
with the same property values as H. The clone method creates a new
unlocked object.

4-185

video.DemosaicInterpolator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-186

video.DemosaicInterpolator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-187

video.DemosaicInterpolator.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
DemosaicInterpolator System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-188

video.DemosaicInterpolator.step

Purpose Perform demosaic operation on input

Syntax Y = step(H,X)

Description Y = step(H,X) performs the demosaic operation on the input X to
produce an M-by-N-by-P color video signal where P is the number of
color planes.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-189

video.DeployableVideoPlayer class

Purpose Send video data to computer screen

Description The DeployableVideoPlayer object sends video data to computer
screen.

Construction H = video.DeployableVideoPlayer returns a deployable video player
System object, H, that sends video data to a computer screen.

H =
video.DeployableVideoPlayer(’PropertyName’,PropertyValue,...)
returns a deployable video player System object, H, with each specified
property set to the specified value.

H =
video.DeployableVideoPlayer(FRAMERATE,’PropertyName’,PropertyValue,...)
returns a deployable video player System object, H, with the FrameRate
property set to FRAMERATE and other specified properties set to
the specified values.

Properties WindowLocation

Location of top left corner of video window

Specify the location of top left corner of video player window
as a two-element vector where the first and second elements
represent the vertical and horizontal positions respectively. [0 0]
represents the top left corner of the window. The default value of
this property is [0 0].

WindowCaption

Caption that is displayed on video

Specify the caption to display on the video player window as any
string. The default value of this property is Deployable Video
Player.

WindowSize

Size of video display window

4-190

video.DeployableVideoPlayer class

Specify the video player window size as Full-screen, or True
size (1:1). When this property is set to Full-screen, use the
Esc key to exit out of full-screen mode. The default value for this
property is True size (1:1).

FrameRate

Frame rate of video data

Specify the rate of video data in frames per second as a positive
integer-valued scalar. The default value of this property is 30.

Methods clone Create deployable video player
object with same property values

close Release resources for the System
object

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Send multidimensional video to
computer screen

Examples Play back a video on the screen.

hmfr = video.MultimediaFileReader;
hdvp = video.DeployableVideoPlayer;
while ~isDone(hmfr)
frame = step(hmfr);
step(hdvp, frame);

end
close(hmfr);

4-191

video.DeployableVideoPlayer class

close(hdvp);

Algorithm This object implements the algorithm, inputs, and outputs described
on the To Video Display block reference page. The object properties
correspond to the block parameters, except for:

• TheWindow Size block parameter includes an additional option for
Normal window size. You can only set the corresponding WindowSize
object property to Full-screen or True size (1:1).

• The Image Signal block parameter allows you to specify whether
the block accepts the color video signal as One Multidimensional
Signal or Separate Color Signals. The object does not have a
property that corresponds to the Image Signal block parameter.
You must always provide the input image to the step method of the
object as a single multidimensional signal.

• The To Video Display block opens the video player at the start of
simulation.

See Also signalblks.MultimediaFileWriter

4-192

video.DeployableVideoPlayer.clone

Purpose Create deployable video player object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a DeployableVideoPlayer System object C,
with the same property values as H. The clone method creates a new
unlocked object.

4-193

video.DeployableVideoPlayer.close

Purpose Release resources for the DeployableVideoPlayer System object

Syntax close(h)

Description close(h) releases system resources (such as memory, file handles or
hardware connections).

4-194

video.DeployableVideoPlayer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-195

video.DeployableVideoPlayer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-196

video.DeployableVideoPlayer.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
DeployableVideoPlayer System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-197

video.DeployableVideoPlayer.step

Purpose Send multidimensional video to computer screen

Syntax step(H,I)

Description step(H,I) sends one frame of a multidimensional video, I, to the
computer screen.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-198

video.EdgeDetector class

Purpose Find edges of objects in images

Description The EdgeDetector object finds edges of objects in images. For Sobel,
Prewitt and Roberts algorithms, the object finds edges in an input image
by approximating the gradient magnitude of the image. The gradient is
obtained as a result of convolving the image with the Sobel, Prewitt or
Roberts kernel. For Canny algorithm, the object finds edges by looking
for the local maxima of the gradient of the input image. It calculates
the gradient using the derivative of a Gaussian filter. This algorithm is
more robust to noise and more likely to detect true weak edges.

Construction H = video.EdgeDetector returns an edge detection System object,
H, that finds edges in an input image using Sobel, Prewitt, Roberts,
or Canny algorithm.

H = video.EdgeDetector(’PropertyName’,PropertyValue,...)
returns an edge detection object, H, with each specified property set to
the specified value.

Properties Method

Edge detection algorithm

Specify the edge detection algorithm as Sobel, Prewitt, Roberts,
or Canny. The default value for this property is Sobel.

BinaryImageOutputPort

Output the binary image

Set this property to true to output the binary image after edge
detection. When this property is set to true, the object will
output a boolean matrix. The nonzero elements of this matrix
correspond to the edge pixels and the zero elements correspond
to the background pixels. This property applies when you set the
Method property to Sobel, Prewitt or Roberts. The default value
for this property is true.

GradientComponentOutputPorts

4-199

video.EdgeDetector class

Output the gradient components

Set this property to true to output the gradient components after
edge detection. When you set this property to true, and the
Method property to Sobel or Prewitt, this System object outputs
the gradient components that correspond to the horizontal and
vertical edge responses. When you set the Method property to
Roberts, the System object outputs the gradient components
that correspond to the 45 and 135 degree edge responses. Both
BinaryImageOutputPort and GradientComponentOutputPorts
properties cannot be false at the same time. The default value
for this property is false.

ThresholdSource

Source of threshold value

Specify how to determine threshold as Auto , Property ,
Input port. This property applies when you set the Method
property to Canny. This property also applies when you set
theMethod property to Sobel, Prewitt or Roberts and the
BinaryImageOutputPort property to true. The default value for
this property is Auto.

Threshold

Threshold value(s)

Specify the threshold value as a scalar of MATLAB built-in
numeric data type that is within the range of the input data when
you set the Method property to Sobel, Prewitt or Roberts. Specify
the threshold as a two-element vector of low and high values
that define the weak and strong edges when you set the Method
property to Canny. The default value is [0.25 0.6] when you set
the Method property to Canny. Otherwise, the default value is 20.
This property is accessible when the ThresholdSource property is
Property. This property is tunable.

ThresholdScaleFactor

Multiplier to adjust value of automatic threshold

4-200

video.EdgeDetector class

Specify multiplier that is used to adjust calculation of automatic
threshold as a scalar MATLAB built-in numeric data type. This
property applies when you set the Method property to Sobel,
Prewitt or Roberts and the ThresholdSource property to Auto.
The default value for this property is 4. This property is tunable.

EdgeThinning

Enable performing edge thinning

Indicate whether edge thinning should be performed. Choosing
to perform edge thinning requires additional processing time and
resources. This property applies when you set the Method property
to Sobel, Prewitt or Roberts and the BinaryImageOutputPort
property to true. The default value of this property is false.

NonEdgePixelsPercentage

Approximate percentage of weak and non-edge pixels

Specify the approximate percentage of weak edge and non-edge
image pixels as a scalar between 0 and 100. This property applies
when set the Method property to Canny and the ThresholdSource
to Auto. The default value for this property is 70. This property
is tunable.

GaussianFilterStandardDeviation

Standard deviation of Gaussian

filter Specify the standard deviation of the Gaussian filter whose
derivative is convolved with the input image. This property can be
set to any positive scalar. This property applies when you set the
Method property to Canny. The default value for this property is 1.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

4-201

video.EdgeDetector class

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when
you do not set the Method property to Canny. The default value for
this property is Custom.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies when you do not set the Method property to Canny. The
default value for this property is Wrap.

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as first
input, Custom. This property applies when you do not set the
Method property to Canny. The default value for this property
is Custom

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property iapplies when
you do not set the Method property to Canny. This property applies
when you set the ProductDataType property to Custom. The
default value of this property is numerictype([],32,8).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as first
input, Same as product, Custom. This property applies when
you do not set the Method property to Canny. The default value for
this property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

4-202

video.EdgeDetector class

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
do not set the Method property to Canny. This property applies
when you set the AccumulatorDataType property to Custom. The
default value of this property is numerictype([],32,8).

GradientDataType

Gradient word and fraction lengths

Specify the gradient components fixed-point data type as Same
as accumulator, Same as first input, Same as product, or
Custom. This property applies when you do not set the Method
property to Canny and you set the GradientComponentPorts
property to true. The default value of this property is Same as
first input.

CustomGradientDataType

Gradient word and fraction lengths

Specify the gradient components fixed-point type as a scaled
numerictype object with a Signedness of Auto. This property is
accessible when the Method property is not Canny. This property
is applicable when the GradientDataType property is Custom.
The default value of this property is numerictype([],16,4).

Methods clone Create edge detector object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

4-203

video.EdgeDetector class

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Operate on inputs to calculate
outputs

Examples Find the edges in an image

hedge = video.EdgeDetector;
hcsc = video.ColorSpaceConverter(...
'Conversion', 'RGB to intensity');
hidtypeconv = ...

video.ImageDataTypeConverter('OutputDataType','single');
img = step(hcsc, imread('peppers.png'));
img1 = step(hidtypeconv, img);
edges = step(hedge, img1);
imshow(edges);

Algorithm This object implements the algorithm, inputs, and outputs described
on the Edge Detection block reference page. The object properties
correspond to the block parameters.

See Also video.TemplateMatcher

4-204

video.EdgeDetector.clone

Purpose Create edge detector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a EdgeDetector System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-205

video.EdgeDetector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-206

video.EdgeDetector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-207

video.EdgeDetector.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the EdgeDetector
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-208

video.EdgeDetector.step

Purpose Operate on inputs to calculate outputs

Syntax EDGES = step(H,IMG)
[GV,GH] = step(H,IMG)
[EDGES,GV,GH] = step(H,IMG)

Description EDGES = step(H,IMG) finds the edges, EDGES , in input IMG using the
specified algorithm when the BinaryImageOutputPort property is
true. EDGES is a boolean matrix with non-zero elements representing
edge pixels and zero elements representing background pixels.

[GV,GH] = step(H,IMG) finds the two gradient components, GV and GH
, of the input IMG when you set the Method property to Sobel, Prewitt
or Roberts, the GradientComponentOutputPorts property to true and
the BinaryImageOutputPort property to false. If you set the Method
property to Sobel or Prewitt, then GV is a matrix of gradient values
in the vertical direction and GH is a matrix of gradient values in the
horizontal direction. If you set the Method property to Roberts, then GV
represents the gradient component at 45 degree edge response, and GH
represents the gradient component at 135 degree edge response.

[EDGES,GV,GH] = step(H,IMG) finds the edges, EDGES , and the
two gradient components, GV and GH , of the input IMG when you
set the Method property to Sobel, Prewitt or Roberts and both
the BinaryImageOutputPort and GradientComponentOutputPorts
properties are true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-209

video.FFT2D class

Purpose Two-dimensional discrete Fourier transform

Description The video.FFT2D object computes the 2D discrete Fourier transform
(DFT) of a two-dimensional input matrix. Both the row and column
dimension of the input matrix must be powers of two. The object uses
one or more of the following fast Fourier transform (FFT) algorithms
depending on the complexity of the input and whether the output is in
linear or bit-reversed order:

• Double-signal algorithm

• Half-length algorithm

• Radix-2 decimation-in-time (DIT) algorithm

• Radix-2 decimation-in-frequency (DIF) algorithm

Construction H = video.FFT2D returns a 2D FFT object, H, that computes the fast
Fourier transform of a two-dimensional input.

H = video.FFT2D('PropertyName',PropertyValue, ...) returns a
2D FFT object, H, with each property set to the specified value.

Properties TableOptimization

Optimization of the trigonometric values table

Select the optimization of the trigonometric values table to
be Speed or Memory. You must set this property to Speed for
fixed-point inputs. The default value of this property is Speed.

BitReversedOutput

Output in bit-reversed order relative to input

Designates the order of output channel elements relative to the
order of input elements. Set this property to true to output the
frequency indices in bit-reversed order. The default value of
this property is false, which corresponds to a linear ordering of
frequency indices.

4-210

video.FFT2D class

Normalize

Divide butterfly outputs by two

Set this property to true to divide each butterfly of the FFT by 2.
The default value of this property is false and no scaling occurs.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies only
when you set the TableOptimization property to Speed. The
default value of this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies only when the TableOptimization property is Speed. The
default value of this property is Wrap.

SineTableDataType

Sine table word and fraction lengths

Specify the sine table data type as Same word length as
input, or Custom . This property applies only when the
TableOptimization property is Speed. The default value of this
property is Same word length as input.

CustomSineTableDataType

Sine table word and fraction lengths

Specify the sine table fixed-point type as an unscaled numerictype
object with a Signedness of Auto. This property applies only
when the TableOptimization property is Speed and the

4-211

video.FFT2D class

SineTableDataType property is Custom. The default value of this
property is numerictype([],16).

ProductDataType

Product word and fraction lengths

Specify the product data type as Internal rule, Same as
input, or Custom. This property applies only when the
TableOptimization property is Speed. The default value of this
property is Internal rule.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies only
when the TableOptimization property is Speed and the
ProductDataType property is Custom. The default value of this
property is numerictype([],32,30).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator data type as Internal rule, Same as
input, Same as product, or Custom. This property applies only
when the TableOptimization property is Speed. The default
value of this property is Internal rule.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies only
when the TableOptimization property is Speed and the
AccumulatorDataType property is Custom. The default value of
this property is numerictype([],32,30).

OutputDataType

Output word and fraction lengths

4-212

video.FFT2D class

Specify the output data type as Internal rule, Same as
input, or Custom. This property applies only when the
TableOptimization property is Speed. The default value of this
property is Internal rule.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies only when the
TableOptimization property is Speed and the OutputDataType
property is Custom. The default value of this property is
numerictype([],16,15).

Methods clone Create FFT2D object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute 2D discrete Fourier
transform of input

Examples Use 2D FFT to view the frequency components of an image:

hfft2d = video.FFT2D;
hcsc = video.ColorSpaceConverter(...
'Conversion', 'RGB to intensity');
hgs = video.GeometricScaler(...
'SizeMethod', 'Number of output rows and columns', ...
'Size', [512 512]);

4-213

video.FFT2D class

x = imread('saturn.png');
x1 = step(hgs,x);
ycs = step(hcsc, x1);
y = step(hfft2d, ycs);
y1 = fftshift(double(y));
imshow(log(max(abs(y1), 1e-6)),[]);
colormap(jet(64));

Algorithm This object implements the algorithm, inputs, and outputs described
on the 2-D FFT block reference page. The object properties correspond
to the block parameters.

See Also video.IFFT2D | video.DCT2D | video.IDCT2D

4-214

video.FFT2D.clone

Purpose Create FFT2D object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an instance of the current FFT2D object with the
same property values. The clone method creates a new unlocked object.

4-215

video.FFT2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-216

video.FFT2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-217

video.FFT2D.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the FFT2D System
object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-218

video.FFT2D.step

Purpose Compute 2D discrete Fourier transform of input

Syntax Y = step(H,X)

Description Y = step(H,X) computes the 2D discrete Fourier transform (DFT), Y ,
of an M-by-N input matrix X , where M and N are integer powers of two.

4-219

video.GammaCorrector class

Purpose Apply or remove gamma correction from images or video streams

Description The GammaCorrector object applies gamma correction to input images
or video streams.

Construction H = video.GammaCorrector returns a System object, HGAMMACORR, that
applies or removes gamma correction from images or video streams.

H = video.GammaCorrector(’PropertyName’,PropertyValue,...)
returns a gamma corrector System object, H, with each specified
property set to the specified value.

H =
video.GammaCorrector(GAMMA,’PropertyName’,PropertyValue,...)
returns a gamma corrector System object, H, with the Gamma property
set to GAMMA and other specified properties set to the specified values.

Properties Correction

Specify gamma correction or linearization

Specify the object’s operation as Gamma or De-gamma. The default
value of this property is Gamma

Gamma

Gamma value of output or input

If you set the Correction property to Gamma, this property gives
the desired gamma value of the output video stream. If you set
the Correction property to De-gamma, this property indicates the
gamma value of the input video stream. This property must be a
numeric scalar value greater than or equal to 1. The default value
of this property is 2.2.

LinearSegment

Enable gamma curve to have linear portion near origin

Set this property to true to make the gamma curve have a linear
portion near the origin. The default value of this property is true.

4-220

video.GammaCorrector class

BreakPoint

I-axis value of the end of gamma correction linear segment

Specify the I-axis value of the end of the gamma correction linear
segment as a scalar numeric value between 0 and 1. This property
applies when you set the LinearSegment property to true. The
default value of this property is 0.018.

Methods clone Create gamma corrector object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Apply or remove gamma
correction from input

Examples Improve image contrast.

hgamma = ...
video.GammaCorrector(2.0,'Correction','De-gamma');

x = imread('pears.png');
y = step(hgamma, x);
imshow(x); title('Original Image');
figure, imshow(y);
title('Enhanced Image after De-gamma Correction');

Algorithm This object implements the algorithm, inputs, and outputs described
on the Gamma Correction block reference page. The object properties
correspond to the block parameters.

4-221

video.GammaCorrector class

See Also video.HistogramEqualizer | video.ContrastAdjuster

4-222

video.GammaCorrector.clone

Purpose Create gamma corrector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a GammaCorrector System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-223

video.GammaCorrector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-224

video.GammaCorrector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-225

video.GammaCorrector.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the GammaCorrector
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-226

video.GammaCorrector.step

Purpose Apply or remove gamma correction from input

Syntax Y = step(H,X)

Description Y = step(H,X) applies or removes gamma correction from input X and
returns the gamma corrected or linearized output Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-227

video.GeometricRotator class

Purpose Rotate image by specified angle

Description The GeometricRotator object rotates image by specified angle.

Construction H = video.GeometricRotator returns a geometric rotator System

object, H, that rotates an image by

6
radians.

H = video.GeometricRotator(’PropertyName’,PropertyValue...)
returns a geometric rotator object, H, with each specified property set to
the specified value.

Properties OutputSize

Output size as full or same as input image size

Specify the size of output image as Expanded to fit rotated
input image, or Same as input image. If this property is set to
Expanded to fit rotated input image, the object outputs a
matrix that contains all the rotated image values. If it is set to
Same as input image, the object outputs a matrix that contains
the middle part of the rotated image. The default value for this
property is Expanded to fit rotated input image.

AngleSource

Source of angle

Specify how to specify the rotation angle as Property or Input
port. The default value of this property is Property.

Angle

Rotation angle value (radians)

Set this property to a real, scalar value for the rotation angle
(radians). This property applies when you set the AngleSource
property to Property. The default value of this property is pi/6.

MaximumAngle

4-228

video.GeometricRotator class

Maximum angle by which to rotate image

Specify the maximum angle by which to rotate the input image
as a numeric scalar value greater than 0. This property applies
when you set the AngleSource property to Input port. The
default value of this property is pi.

RotatedImageLocation

How the image is rotated

Specify how the image is rotated as Top-left corner, or Center.
If this property is set to Center, the image is rotated about its
center point. If it is set to Top-left corner, the object rotates the
image so that two corners of the input image are always in contact
with the top and left side of the output image. This property
applies when you set the OutputSize property to Expanded to
fit rotated input image, and, the AngleSource property to
Input port. The default value for this property is Center

SineComputation

How to calculate the rotation

Specify how to calculate the rotation as Trigonometric
function, Table lookup. If this property is set to Trigonometric
function, the object computes sine and cosine values it needs
to calculate the rotation of the input image. If it is set to Table
lookup, the object computes and stores the trigonometric values
it needs to calculate the rotation of the input image in a table
and uses the table for each step call. In this case, the object
requires extra memory. The default value for this property is
Table lookup.

BackgroundFillValue

Value of pixels outside image

Specify the value of pixels that are outside the image as a numeric
scalar value or a numeric vector of same length as the third
dimension of input image. The default value of this property is 0.
This property is tunable.

4-229

video.GeometricRotator class

InterpolationMethod

Interpolation method used to rotate image

Specify the interpolation method used to rotate the image as
Nearest neighbor, Bilinear, or Bicubic. If this property is set
to Nearest neighbor, the object uses the value of one nearby
pixel for the new pixel value. If it is set to Bilinear, the new
pixel value is the weighted average of the four nearest pixel
values. If it is set to Bicubic, the new pixel value is the weighted
average of the sixteen nearest pixel values. The default value
for this property is Bilinear.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when
you set the SineComputation property to Table lookup. The
default value for this property is Nearest.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies when you set the SineComputation property to Table
lookup. The default value for this property is Saturate.

AngleDataType

Angle word and fraction lengths

Specify the angle fixed-point data type as Same word length
as input, or Custom. This property applies when you set
the SineComputation property to Table lookup, and the
AngleSource property to Property. The default value for this
property is Same word length as input.

4-230

video.GeometricRotator class

CustomAngleDataType

Angle word and fraction lengths

Specify the angle fixed-point type as a signed numerictype object
with a Signedness of Auto. This property applies when you set the
SineComputation property to Table lookup, the AngleSource
property is Property and the AngleDataType property to Custom.
The default value of this property is numerictype([],32,10).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as first
input, or Custom. This property applies when you set the
SineComputation property to Table lookup. The default value
for this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when
you set the SineComputation property to Table lookup, and the
ProductDataType property to Custom. The default value of this
property is numerictype([],32,10).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, or Same as first input, Custom. This property applies
when you set the SineComputation property to Table lookup.
The default value for this property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when

4-231

video.GeometricRotator class

you set the SineComputation property to Table lookup, and the
AccumulatorDataType property to Custom. The default value of
this property is numerictype([],32,10).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as first input,
Custom. This property applies when you set the SineComputation
property to Table lookup. The default value for this property is
Same as first input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when
you set the SineComputation property to Table lookup, and the
OutputDataType property to Custom. The default value of this
property is numerictype([],32,10).

Methods clone Create geometric rotator object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Return a rotated image

Examples Rotate an image 90 degrees (pi/2 radians).

hrotate1 = video.GeometricRotator;

4-232

video.GeometricRotator class

hrotate1.Angle = pi / 2;
img1 = im2double(rgb2gray(imread('peppers.png')));
% rotimg1 contains img1 rotated
rotimg1 = step(hrotate1,img1);
imshow(rotimg1);

Rotate an image, with the rotation angle provided as an input. By
setting the AngleSource property to Input port, the rotation angle is
passed as an input.

hrotate2 = video.GeometricRotator;
hrotate2.AngleSource = 'Input port';
img2 = im2double(rgb2gray(imread('onion.png')));
% rotimg2 contains img2 rotated
rotimg2 = step(hrotate2,img2,pi/4);
imshow(rotimg2);

Algorithm This object implements the algorithm, inputs, and outputs described
on the Rotate block reference page. The object properties correspond
to the block parameters.

See Also video.GeometricTranslator | video.GeometricScaler

4-233

video.GeometricRotator.clone

Purpose Create geometric rotator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a GeometricRotator System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-234

video.GeometricRotator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-235

video.GeometricRotator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-236

video.GeometricRotator.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
GeometricRotator System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-237

video.GeometricRotator.step

Purpose Return a rotated image

Syntax Y = step(H,IMG)
Y = step(H,IMG,ANGLE)

Description Y = step(H,IMG) returns a rotated image Y , with the rotation angle
specified by the Angle property.

Y = step(H,IMG,ANGLE) uses input ANGLE as the angle to rotate the
input IMG when the AngleSource property is set to Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-238

video.GeometricScaler class

Purpose Enlarge or shrink image sizes

Description The GeometricScaler object enlarges or shrinks image sizes.

Construction H = video.GeometricScaler returns a System object, H, that changes
the size of an image or a region of interest within an image.

H = video.GeometricScaler(’PropertyName’,PropertyValue,...)
returns a geometric scaler object, H, with each specified property set to
the specified value.

Properties SizeMethod

Aspects of image to resize

Specify which aspects of the input image to resize as Output
size as a percentage of input size, Number of output
columns and preserve aspect ratio, Number of output rows
and preserve aspect ratio, Number of output rows and
columns. The default value for this property is Output size as
a percentage of input size.

ResizeFactor

Percentage by which to resize rows and columns

Set this property to a scalar percentage value that is applied to
both rows and columns or a two-element vector, where the first
element is the percentage by which to resize the rows and the
second element is the percentage by which to resize the columns.
This property applies when you set the SizeMethod property to
Output size as a percentage of input size. The default
value of this property is [200 150].

NumOutputColumns

Number of columns in output image

Specify the number of columns of the output image as a positive
integer scalar value. This property applies when you set the

4-239

video.GeometricScaler class

SizeMethod property to Number of output columns and
preserve aspect ratio. The default value of this property is 25.

NumOutputRows

Number of rows in output image

Specify the number of rows of the output image as a positive
integer scalar value. This property applies when you set the
SizeMethod property to Number of output rows and preserve
aspect ratio. The default value of this property is 25.

Size

Dimensions of output image

Set this property to a two-element vector, where the first element
is the number of rows in the output image and the second element
is the number of columns. This property applies when you set the
SizeMethod property to Number of output rows and columns.
The default value of this property is [25 35].

InterpolationMethod

Interpolation method used to resize the image

Specify the interpolation method to resize the image as Nearest
neighbor, Bilinear, Bicubic, Lanczos2, Lanczos3. If this
property is set to Nearest neighbor, the object uses one nearby
pixel to interpolate the pixel value. If it is set to Bilinear, the
object uses four nearby pixels to interpolate the pixel value. If it is
set to Bicubic or Lanczos2, the object uses sixteen nearby pixels
to interpolate the pixel value. If it is set to Lanczos3, the object
uses thirty six surrounding pixels to interpolate the pixel value.
The default value for this property is Bilinear.

Antialiasing

Enable low-pass filtering when shrinking image

Set this property to true to perform low-pass filtering on the input
image before shrinking it, to prevent aliasing when ResizeFactor
is between 0 and 100 percent.

4-240

video.GeometricScaler class

ROIProcessing

Enable region-of-interest processing

Indicate whether to resize a particular region of each input
image. This property applies when you set the SizeMethod
property to Number of output rows and columns, the
InterpolationMethod parameter to Nearest neighbor,
Bilinear, or Bicubic, and the Antialiasing property to false.
The default value is false.

ROIValidityOutputPort

Enable indication that ROI is outside input image

Indicate whether to return the validity of the specified ROI being
completely inside image. This property applies when you set the
ROIProcessing property to true. The default value is false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value for this
property is Nearest.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value for this property is Saturate.

InterpolationWeightsDataType

Interpolation weights word and fraction lengths

Specify the interpolation weights fixed-point data type as Same
word length as input, Custom. The default value for this

4-241

video.GeometricScaler class

property is Same word length as input. This property is
applicable under any of the following conditions:

• If you set the InterpolationMethod property to Bicubic,
Lanczos2, or Lanczos3.

• If you set the SizeMethod property to any value other than
Output size as a percentage of input size.

• If you set:

The SizeMethod property to Output size as a percentage
of input size.
The InterpolationMethod property to Bilinear or Nearest
neighbor.
Any of the elements of the ResizeFactor is less than 100,
implying shrinking the input image.
The Antialiasing property to true

CustomInterpolationWeightsDataType

Interpolation weights word and

fraction lengths Specify the interpolation weights
fixed-point type as an unscaled numerictype object with a
Signedness of Auto. This property applies when you set the
InterpolationWeightsDataType property to Custom. The default
value of this property is numerictype([],32).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as input, or
Custom. The default value for this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you

4-242

video.GeometricScaler class

set the ProductDataType property to Custom. The default value of
this property is numerictype([],32,10).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Same as input, Custom. The default value for this
property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the AccumulatorDataType property to Custom. The default
value of this property is numerictype([],32,10).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as input, or
Custom. The default value for this property is Same as input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies when you set
the OutputDataType property to Custom. The default value of this
property is numerictype([],32,10).

Methods clone Create geometric scaler object
with same property values

getNumInputs Number of expected inputs to
step method

4-243

video.GeometricScaler class

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Resize an image

Examples Enlarge an image. Display the original and the enlarged images.

x=imread('cameraman.tif');
hgs=video.GeometricScaler;
hgs.SizeMethod = ...
'Output size as a percentage of input size';

hgs.InterpolationMethod='Bilinear';
y = step(hgs,x);
imshow(x); title('Original Image');
figure,imshow(y);title('Resized Image');

Algorithm This object implements the algorithm, inputs, and outputs described
on the Resize block reference page. The object properties correspond
to the block parameters.

See Also video.Pyramid | video.GeometricRotator |
video.GeometricTranslator

4-244

video.GeometricScaler.clone

Purpose Create geometric scaler object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a GeometricScaler System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-245

video.GeometricScaler.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-246

video.GeometricScaler.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-247

video.GeometricScaler.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
GeometricScaler System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-248

video.GeometricScaler.step

Purpose Resize an image

Syntax Y = step(H,X)
Y = step(H,X,ROI)
[Y,FLAG] = step(H,X,ROI)

Description Y = step(H,X) returns a resized image, Y , of input image X.

Y = step(H,X,ROI) resizes a particular region of the image X defined
by the ROI input. This option applies when you set the SizeMethod
property to Number of output rows and columns, the Antialiasing
property to false, the InterpolationMethod property to Bilinear,
Bicubic or Nearest neighbor, and the ROIProcessing property to
true.

[Y,FLAG] = step(H,X,ROI) also returns FLAG which indicates
whether the given region of interest is within the image bounds.
This applies when you set the SizeMethod property to Number of
output rows and columns, the Antialiasing property to false, the
InterpolationMethod property to Bilinear, Bicubic or Nearest
neighbor and, the ROIProcessing and the ROIValidityOutputPort
properties to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-249

video.GeometricTransformer class

Purpose Apply projective or affine transformation to an image

Description The GeometricTransformer object applies a projective or affine
transformation to an image.

Construction H = video.GeometricTransformer returns a geometric transformation
System object, H, which applies a projective or affine transformation
to an image.

H =
video.GeometricTransformer(’PropertyName’,PropertyValue,...)
returns a geometric transformation object, H, with each specified
property set to the specified value.

Properties TransformMatrixSource

Method to specify transformation matrix

Specify as Property or Input port. The default value for this
property is Input port.

TransformMatrix

Transformation matrix

Specify the applied transformation matrix as a 2-by-3 or 6-by-Q
affine transformation matrix or a 3-by-3 or a 9-by-Q projective
transformation matrix. Q is the number of transformations.
This property applies when you set the TransformMatrixSource
property to Property. The default value for this property is [1 0
0; 0 1 0; 0 0 1].

InterpolationMethod

Interpolation method

Specify as Nearest neighbor, Bilinear, or Bicubic for
calculating the output pixel value. The default value for this
property is Bilinear.

BackgroundFillValue

4-250

video.GeometricTransformer class

Background fill value

Specify the value of the pixels that are outside of the input image.
The value can be either scalar or a P-element vector, where P is
the number of color planes. The default value for this property
is 0.

OutputImagePositionSource

Method to specify output image location and size

Specify the value of this property as Auto or Property. If this
property is set to Auto, the output image location and size are
the same values as the input image. The default value for this
property is Auto.

OutputImagePosition

Output image position vector

Specify the location and size of output image, as a
four-element double vector in pixels, of the form, [left top
height width]. This property applies when you set the
OutputImagePositionSource property to Property. The default
value for this property is [0 0 512 512].

ROIInputPort

Enable the region of interest input port

Set this property to true to enable the input of the region of
interest. When set to false, the whole input image is processed.
The default value for this property is false.

ROIShape

Region of interest shape

Specify ROIShape as Rectangle ROI, or Polygon ROI. This
property applies when you set the ROIInputPort property to
true. The default value for this property is Rectangle ROI.

ROIValidityOutputPort

4-251

video.GeometricTransformer class

Enable output of ROI flag

Set this property to true to enable the output of an ROI flag
indicating when any part of the ROI is outside the input image.
This property applies when you set the ROIInputPort property to
true. The default value for this property is false.

ProjectiveTransformMethod

Projective transformation method

Method to compute the projective transformation. Specify as
Compute exact values, or Use quadratic approximation. The
default value for this property is Compute exact values.

ErrorTolerance

Error tolerance (in pixels)

Specify the maximum error tolerance in pixels for the projective
transformation. This property applies when you set the
ProjectiveTransformMethod property to Use quadratic
approximation. The default value for this property is 1.

ClippingStatusOutputPort

Enable clipping status flag output

Set this property to true to enable the output of a flag indicating
if any part of the output image is outside the input image. The
default value for this property is false.

Methods clone Create geometric transformer
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

4-252

video.GeometricTransformer class

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Apply geometric transform to
input image

Examples Apply a horizontal shear to an intensity image.

htrans1 = video.GeometricTransformer(...
'TransformMatrixSource', 'Property', ...
'TransformMatrix',[1 0 0; .5 1 0; 0 0 1],...
'OutputImagePositionSource', 'Property',...
'OutputImagePosition', [0 0 400 750]);

img1 = im2single(rgb2gray(imread('peppers.png')));
transimg1 = step(htrans1,img1);
imshow(transimg1);

Apply a transform with multiple polygon ROI’s.

htrans2 = video.GeometricTransformer;
img2 = checker_board(20,10);
tfMat=[1 0 -15*2 0 1 15*2; ...

0.4082 0 15*2 -0.4082 1.0204 35*2; ...
1 -0.4082 5.4082*2 0 0.4082 44.5918*2]';

polyROI = [50 0 50 49 99 49 99 0; ...
0 0 0 49 49 49 49 0; ...

50 50 50 99 99 99 99 50]' * 2;

htrans2.BackgroundFillValue = [0.5 0.5 0.75];
htrans2.ROIInputPort = true;
htrans2.ROIShape = 'Polygon ROI';
transimg2 = step(htrans2,img2,tfMat,polyROI);
imshow(img2);
figure;imshow(transimg2);

4-253

video.GeometricTransformer class

Algorithm This object implements the algorithm, inputs, and outputs described on
the Apply Geometric Transformation block reference page. The object
properties correspond to the block parameters.

See Also video.GeometricTransformEstimator

4-254

video.GeometricTransformer.clone

Purpose Create geometric transformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a GeometricTransformer System object C,
with the same property values as H. The clone method creates a new
unlocked object.

4-255

video.GeometricTransformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-256

video.GeometricTransformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-257

video.GeometricTransformer.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
GeometricTransformer System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-258

video.GeometricTransformer.step

Purpose Apply geometric transform to input image

Syntax Y = step(H,X,TFORM)
Y = step(H,X)
Y = step(H,X,ROI)
[Y, ROIFLAG]=(H,X,...)
[Y,CLIPFLAG]=(H,X,...)
[Y,ROIFLAG,CLIPFLAG] = step(H,X,TFORM,ROI)

Description Y = step(H,X,TFORM) outputs the transformed image, Y, of the input
image, X . X is either an M-by-N or an M-by-N-by-P matrix, where M is
the number of rows, N is the number of columns and P is the number
of color planes in the image. TFORM is the applied transformation
matrix. TFORM can be a 2-by-3 or 6-by-Q affine transformation matrix,
or a 3-by-3 or 9-by-Q projective transformation matrix, where Q is the
number of transformations.

Y = step(H,X) outputs the transformed image, Y , of the input image, X
, when you set the TransformMatrixSource property to Property.

Y = step(H,X,ROI) outputs the transformed image of the input image
within the region of interest, ROI . When specifying a rectangular region
of interest, ROI must be a 4-element vector or a 4-by-R matrix. When
specifying a polygonal region of interest, ROI must be a 2L-element
vector or a 2L-by-R matrix. R is the number of regions of interest, and L
is the number of vertices in a polygon region of interest.

[Y, ROIFLAG]=(H,X,...) returns a boolean flag, ROIFLAG , indicating
if any part of the region of interest is outside the input image, when you
set the ROIValidityOutputPort property to true.

[Y,CLIPFLAG]=(H,X,...) returns a boolean flag, CLIPFLAG,
indicating if any transformed pixels were clipped, when you set the
ClippingStatusOutputPort property to true.

[Y,ROIFLAG,CLIPFLAG] = step(H,X,TFORM,ROI) outputs the
transformed image, Y , of the input image, X , within the region of
interest, ROI , and using the transformation matrix, TFORM . ROIFLAG
, indicates if any part of the region of interest is outside the input

4-259

video.GeometricTransformer.step

image, and CLIPFLAG , indicates if any transformed pixels were clipped.
This provides all operations simultaneously with all possible inputs.
Properties must be set appropriately.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-260

video.GeometricTransformEstimator class

Purpose Estimate geometric transformation from matching point pairs

Description The GeometricTransformEstimator object estimates geometric
transformation from matching point pairs.

Construction H = video.GeometricTransformEstimator returns a geometric
transform estimation System object, H, that finds the transformation
matrix that maps the largest number of points between two images.

H =
video.GeometricTransformEstimator(’PropertyName’,PropertyValue,...)
returns a geometric transform estimation object, H, with each specified
property set to the specified value.

Properties Transform

Transformation type

Specify transformation type as Nonreflective similarity,
Affine, or Projective . The default value for this property is
Projective.

ExcludeOutliers

Whether to exclude outliers from input points

Set this property to true to find and exclude outliers from the
input points and use only the inlier points to calculate the
transformation matrix. When this property is false, all input
points are used to calculate the transformation matrix. The
default value of this property is true.

Method

Method to find outliers

Specify the method to find outliers as Random Sample Consensus
(RANSAC), Least Median of Squares. The default value for this
property is Random Sample Consensus (RANSAC).

AlgebraicDistanceThreshold

4-261

video.GeometricTransformEstimator class

Algebraic distance threshold for determining inliers

Specify a scalar threshold value for determining inliers as a
positive scalar value. The threshold controls the upper limit
used to find the algebraic distance in the RANSAC Method.
This property applies when you set the Transform property
to Projective and the Method property to Random Sample
Consensus (RANSAC). The default value of this property is 1.5.
This property is tunable.

PixelDistanceThreshold

Distance threshold for determining inliers in pixels

Specify the upper limit of algebraic distance a point can differ
from the projection location of its associating point as a positive
scalar value. This property applies when you set the Transform
property to Nonreflective similarity or to Affine, and the
Method property to Random Sample Consensus (RANSAC). The
default value of this property is 1.5. This property is tunable.

NumRandomSamplingsMethod

How to specify number of random samplings

Indicate how to specify number of random samplings as
Specified value, or Desired confidence. Set this property to
Desired confidence to specify the number of random samplings
as a percentage and a maximum number. This property applies
when you set the ExcludeOutliers property to true and the
Method property to Random Sample Consensus (RANSAC). The
default value for this property is Specified value.

NumRandomSamplings

Number of random samplings

Specify the number of random samplings for the method chosen to
perform as a positive integer value. This property applies when
you set the NumRandomSamplingsMethod property to Specified
value. The default value of this property is 100. This property
is tunable.

4-262

video.GeometricTransformEstimator class

DesiredConfidence

Probability to find largest group of points

Specify the probability to find the largest group of points that
can be mapped by a transformation matrix as a percentage. This
property applies when you set the NumRandomSamplingsMethod
property to Desired confidence. The default value of this
property is 99. This property is tunable.

MaximumRandomSamples

Maximum number of random samplings

Specify the maximum number of random samplings as a
positive integer value. This property applies when you set the
NumRandomSamplingsMethod property to Desired confidence.
The default value of this property is 200. This property is tunable.

InlierPercentageSource

Source of inlier percentage

Indicate how to specify the threshold to stop random sampling
when a percentage of input point pairs have been found as inliers.
This property can be set to one of Auto, or Property. If set to Auto
then inlier threshold is disabled. This property applies when you
set the Method property to Random Sample Consensus (RANSAC).
The default value for this property is Auto.

InlierPercentage

Percentage of point pairs to be found to stop random sampling

Specify the percentage of point pairs that need to be determined
as inliers to stop random sampling. This property applies when
you set the InlierPercentageSource property to Property. The
default value of this property is 75. This property is tunable.

RefineTransformMatrix

Whether to refine transformation matrix

4-263

video.GeometricTransformEstimator class

Set this property to true to perform additional iterative
refinement on the transformation matrix. This property applies
when you set the ExcludeOutliers property to true. The default
value of this property is false.

InlierOutputPort

Enable output of the inlier point pairs

Set this property to true to output the inlier point pairs that
were used to calculate the transformation matrix. This property
applies when you set the ExcludeOutliers property to true. This
property is not used when the data type of points is signed or
double. The default value of this property is false.

TransformMatrixDataType

Data type of the transformation matrix

Specify transformation matrix data type as single or double
when the input points are built-in integers. This property is not
used when the data type of points is single or double. The default
value for this property is single.

Methods clone Create geometric transform
estimator object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

4-264

video.GeometricTransformEstimator class

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Calculate transformation matrix
mapping largest number of valid
points from input arrays

Examples Compute nonreflective similarity transformation matrix that maps a
pair of points between two images.

I = checkerboard; % checkerboard image
theta = 30/180*pi;
hrotate = video.GeometricRotator;
% default rotation angle of hrotate is 0.5236 radians
hgte = video.GeometricTransformEstimator(...
'Transform', 'Nonreflective similarity');
pts1=[14.0000 44.0000;70.0000 81.0000;44.7440 38.0656;...
44.7440 89.1072;72.8884 15.6455].';
% Corresponding points in the rotated image
m = [cos(theta) sin(theta);-sin(theta) cos(theta)];
pts2 = m*pts1;

% Rotate the image by 0.5236 radians (or 30 degrees)
Irot = step(hrotate, I);
% Verify that the estimated transformation matrix
% has same values as the matrix m
tform = step(hgte, pts1, pts2, uint8(5));

Algorithm This object implements the algorithm, inputs, and outputs described
on the Estimate Geometric Transformation block reference page. The
object properties correspond to the block parameters.

See Also video.GeometricTransformer

4-265

video.GeometricTransformEstimator.clone

Purpose Create geometric transform estimator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a GeometricTransformEstimator System object
C, with the same property values as H. The clone method creates a
new unlocked object.

4-266

video.GeometricTransformEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-267

video.GeometricTransformEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-268

video.GeometricTransformEstimator.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
GeometricTransformEstimator System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-269

video.GeometricTransformEstimator.step

Purpose Calculate transformation matrix mapping largest number of valid
points from input arrays

Syntax TFORM = step(H,PTS1,PTS2,NUM)
[TFORM,INLIERIND] = step(H,PTS1,PTS2,NUM)

Description TFORM = step(H,PTS1,PTS2,NUM) calculates the transformation
matrix, TFORM , that maps the largest number of valid points from the
input arrays PTS1 to PTS2 . Both the input arguments, PTS1 and PTS2,
specify the location of points in two images, and each column in the two
arrays has the format [row; column]. The points in the input arrays
must be ordered to form corresponding location pairs. NUM is a scalar
value that represents the number of valid points in PTS1 and PTS2.
Setting the Transform property to Projective, sets TFORM dimension to
3x3, otherwise TFORM gets set to dimension of 2x3.

[TFORM,INLIERIND] = step(H,PTS1,PTS2,NUM) performs the same
operation as above, and also outputs the boolean vector, INLIERIND,
indicating which points are the inliers. This option applies when you
set the InlierOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-270

video.GeometricTranslator class

Purpose Translate image in two-dimensional plane using displacement vector

Description The GeometricTranslator object translates images in two-dimensional
plane using displacement vector.

Construction H = video.GeometricTranslator returns a System object, H, that
moves an image up or down and/or left or right.

H = video.GeometricTranslator(’PropertyName’,PropertyValue,
...) returns a geometric translator System object, H, with each
specified property set to the specified value.

Properties OutputSize

Output size as full or same as input image size

Specify the size of output image after translation as Full or
Same as input image. If this property is set to Full, the object
outputs a matrix that contains the translated image values. If it
is set to Same as input image, the object outputs a matrix that
is the same size as the input image and contains a portion of the
translated image. The default value for this property is Full.

OffsetSource

Source of specifying offset values

Specify how the translation parameters are provided as Input
port, or Property. When the OffsetSource property is set to
Input port a two-element offset vector must be provided to the
System object’s step method. The default value of this property is
Property.

Offset

Translation values

Specify the number of pixels to translate the image as a
two-element offset vector. The first element of the vector
represents a shift in the vertical direction and a positive value
moves the image downward. The second element of the vector

4-271

video.GeometricTranslator class

represents a shift in the horizontal direction and a positive value
moves the image to the right. This property applies when you set
the OffsetSource property to Property. The default value of this
property is [1.5 2.3].

MaximumOffset

Maximum number of pixels by which to translate image

Specify the maximum number of pixels by which to translate the
input image as a two-element real vector with elements greater
than 0. This property must have the same data type as the
Offset input. This property applies when you set the OutputSize
property to Full and OffsetSource property to Input port.
The system object uses this property to determine the size of the
output matrix. If the Offset input is greater than this property
value, the object saturates to the maximum value. The default
value of this property is [8 10].

BackgroundFillValue

Value of pixels outside image

Specify the value of pixels that are outside the image as a numeric
scalar value or a numeric vector of same length as the third
dimension of input image. The default value of this property is 0.

InterpolationMethod

Interpolation method used to translate image

Specify the interpolation method used to translate the image as
Nearest neighbor, Bilinear, Bicubic. If this property is set
to Nearest neighbor, the System object uses the value of the
nearest pixel for the new pixel value. If it is set to Bilinear, the
new pixel value is the weighted average of the four nearest pixel
values. If it is set to Bicubic, the new pixel value is the weighted
average of the sixteen nearest pixel values. The default value
for this property is Bilinear.

4-272

video.GeometricTranslator class

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value for this
property is Nearest.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value of this property is Saturate.

OffsetValuesDataType

Offset word and fraction lengths

Specify the offset fixed-point data type as Same word length as
input, or Custom. The default value of this property is Same word
length as input.

CustomOffsetValuesDataType

Offset word and fraction lengths

Specify the offset fixed-point type as a signed numerictype object
with a Signedness of Auto. This property applies when you set
the OffsetValuesDataType property to Custom. The default value
of this property is numerictype([],16,6).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as first
input, or Custom. The default value of this property is Custom.

CustomProductDataType

Product word and fraction lengths

4-273

video.GeometricTranslator class

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the ProductDataType property to Custom. The default value of
this property is numerictype([],32,10).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Same as first input, or Custom. The default value of
this property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the AccumulatorDataType property to Custom. The default
value of this property is numerictype([],32,10).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as first input,
or Custom. The default value of this property is Same as first
input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies when you set
the OutputDataType property to Custom. The default value of this
property is numerictype([],32,10).

4-274

video.GeometricTranslator class

Methods clone Create geometric translator
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Return a translated image

Examples Translate an image

htranslate=video.GeometricTranslator;
htranslate.OutputSize='Same as input image';
htranslate.Offset=[30 30];
I=im2single(imread('cameraman.tif'));
Y = step(htranslate,I);
imshow(Y);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Translate block reference page. The object properties correspond
to the block parameters.

See Also video.GeometricRotator

4-275

video.GeometricTranslator.clone

Purpose Create geometric translator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an GeometricTranslator System object C,
with the same property values as H. The clone method creates a new
unlocked object.

4-276

video.GeometricTranslator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-277

video.GeometricTranslator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-278

video.GeometricTranslator.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
GeometricTranslator System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-279

video.GeometricTranslator.step

Purpose Return a translated image

Syntax Y = step(H,I)
Y = step(H,I,Offset)

Description Y = step(H,I) translates the input image I, and returns a translated
image Y , with the offset specified by the Offset property.

Y = step(H,I,Offset) uses input Offset as the offset to translate the
image I when the OffsetSource property is to Input port. Offset
is a two-element offset vector that represents the number of pixels to
translate the image. The first element of the vector represents a shift in
the vertical direction and a positive value moves the image downward.
The second element of the vector represents a shift in the horizontal
direction and a positive value moves the image to the right.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-280

video.Histogram2D class

Purpose Generate histogram of each input matrix

Description The Histogram2D object generates histogram of each input matrix.

Construction H = video.Histogram2D returns a histogram System object, H, that
computes the frequency distribution of the elements in each input
matrix.

H = video.Histogram2D(’PropertyName’,PropertyValue,...)
returns a histogram object, H, with each specified property set to the
specified value.

H =
video.Histogram2D(MIN,MAX,NUMBINS,’PropertyName’,PropertyValue,...)
returns a histogram System object, H, with the LowerLimit property set
to MIN, UpperLimit property set to MAX, NumBins property set to
NUMBINS and other specified properties set to the specified values.

Properties LowerLimit

Lower boundary

Specify the lower boundary of the lowest-valued bin as a
real-valued scalar value. NaN and Inf are not valid values for this
property. The default value of this property is 0. This property
is tunable.

UpperLimit

Upper boundary

Specify the upper boundary of the highest-valued bin as a
real-valued scalar value. NaN and Inf are not valid values for this
property. The default value of this property is 1. This property
is tunable.

NumBins

Number of bins in the histogram

4-281

video.Histogram2D class

Specify the number of bins in the histogram. The default value
of this property is 256.

Normalize

Enable output vector normalization

Specify whether the output vector, v, is normalized such that
sum(v) = 1. Use of this property is not supported for fixed-point
signals. The default value of this property is false.

RunningHistogram

Enable calculation over time

Set this property to true to enable computing the histogram of
the input elements over time. Set this property to false to enable
basic histogram operation. The default value of this property is
false.

ResetInputPort

Enable resetting in running histogram mode

Set this property to true to enable resetting the running
histogram. When the property is set to true, a reset input must be
specified to the step method to reset the running histogram. This
property applies when you set the RunningHistogram property
to true. When you set this property to false, the object does not
reset. The default value of this property is false.

ResetCondition

Condition for running histogram mode

Specify event to reset the running histogram as Rising edge,
Falling edge, Either edge, or Non-zero. This property applies
when you set the ResetInputPort property to true. The default
value of this property is Non-zero.

Fixed-Point Properties

RoundingMethod

4-282

video.Histogram2D class

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap.

ProductDataType

Data type of product

Specify the product data type as Internal rule, Same as input,
or Custom. The default value of this property is Internal rule.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a signed, scaled
numerictype object. This property applies only when you set the
ProductDataType property to Custom. The default value of this
property is numerictype(true,32,30).

AccumulatorDataType

Data type of the accumulator

Specify the accumulator data type as, Same as input, Same as
product, or Custom. The default value of this property is Same
as input.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a signed, scaled
numerictype object. This property applies only when you set the
AccumulatorDataType property to Custom. The default value of
this property is numerictype(true,32,30).

4-283

video.Histogram2D class

Methods clone Create 2-D histogram object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

reset Reset histogram bin values to
zero

step Return histogram for input data

Examples Compute histogram of a grayscale image.

img = im2single(rgb2gray(imread('peppers.png')));
hhist2d = video.Histogram2D;
y = step(hhist2d,img);
bar((0:255)/256, y);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Histogram block reference page. The object properties correspond to
the block parameters, except for:

• Reset port block parameter corresponds to both the ResetCondition
and the ResetInputPort object properties.

See Also signalblks.Histogram

4-284

video.Histogram2D.clone

Purpose Create 2-D histogram object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an Histogram2D System object C, with the same
property values as H. The clone method creates a new unlocked object
with uninitialized states.

4-285

video.Histogram2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-286

video.Histogram2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-287

video.Histogram2D.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the Histogram2D
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-288

video.Histogram2D.reset

Purpose Reset histogram bin values to zero

Syntax reset(H)

Description reset(H) sets the Histogram object bin values to zero when the
RunningHistogram property is true.

4-289

video.Histogram2D.step

Purpose Return histogram for input data

Syntax Y = step(H,X)
Y = step(H,X,R)

Description Y = step(H,X) returns a histogram Y for the input data X . When
you set the RunningHistogram property to true, Y corresponds to the
histogram of the input elements over time.

Y = step(H,X,R) computes the histogram of the input X elements over
time, and optionally resets the object’s state based on the value of R and
the object’s ResetCondition property. This applies when you set the
RunningHistogram and ResetInputPort properties to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-290

video.HistogramEqualizer class

Purpose Enhance contrast of images using histogram equalization

Description The HistogramEqualizer object enhances contrast of images using
histogram equalization.

Construction H = video.HistogramEqualizer returns a System object, H, that
enhances the contrast of input image using histogram equalization.

H =
video.HistogramEqualizer(’PropertyName’,PropertyValue,...)
returns a histogram equalization object, H, with each specified
property set to the specified value.

Properties Histogram

How to specify histogram

Specify the desired histogram of the output image as Uniform,
Input port, or Custom. The default value of this property is
Uniform.

CustomHistogram

Desired histogram of output image

Specify the desired histogram of output image as a numeric vector.
This property applies when you set the Histogram property to
Custom. The default value of this property is ones(1,64).

BinCount

Number of bins for uniform histogram to have

Specify the number of equally spaced bins the uniform histogram
has as an integer scalar value greater than 1. This property
applies when you set the Histogram property to Uniform. The
default value of this property is 64.

4-291

video.HistogramEqualizer class

Methods clone Create histogram equalizer object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Perform histogram equalization
on input image

Examples Enhance quality of an image.

hhisteq = video.HistogramEqualizer;
x = imread('tire.tif');
y = step(hhisteq, x);
imshow(x); title('Original Image');
figure, imshow(y);
title('Enhanced Image after histogram equalization');

Algorithm This object implements the algorithm, inputs, and outputs described on
the Histogram Equalization block reference page. The object properties
correspond to the block parameters, except for:

• The Histogram property for the object, corresponds to both the
Target Histogram and the Histogram Source parameters for
the block.

See Also signalblks.Histogram

4-292

video.HistogramEqualizer.clone

Purpose Create histogram equalizer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an HistogramEqualizer System object C, with
the same property values as H. The clone method creates a new
unlocked object.

4-293

video.HistogramEqualizer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-294

video.HistogramEqualizer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-295

video.HistogramEqualizer.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
HistogramEqualizer System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-296

video.HistogramEqualizer.step

Purpose Perform histogram equalization on input image

Syntax Y = step(H,X)
Y = step(H,X,HIST)

Description Y = step(H,X) performs histogram equalization on input image, X ,
and returns the enhanced image, Y.

Y = step(H,X,HIST) performs histogram equalization on input image,
X using input histogram, HIST, and returns the enhanced image, Y when
the Histogram property isInput port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-297

video.HoughLines class

Purpose Find Cartesian coordinates of lines that are described by rho and theta
pairs

Description The HoughLines object finds Cartesian coordinates of lines that are
described by rho and theta pairs. The object inputs are the theta and
rho values of lines and a reference image. The object outputs the
zero-based row and column positions of the intersections between the
lines and two of the reference image boundary lines. The boundary
lines are the left and right vertical boundaries and the top and bottom
horizontal boundaries of the reference image.

Construction H = video.HoughLines returns a Hough lines System object,
HHoughLines, that finds Cartesian coordinates of lines that are
described by rho and theta pairs.

H = video.HoughLines(’PropertyName’,PropertyValue,...)
returns a Hough lines object, HHoughLines, with each specified
property set to the specified value.

Properties SineComputation

Method to calculate sine values used to find intersections of lines

Specify how to calculate sine values which are used to find
intersection of lines as Trigonometric function, or Table
lookup. If this property is set to Trigonometric function,
the object computes sine and cosine values it needs to calculate
the intersections of the lines. If it is set to Table lookup, the
object computes and stores the trigonometric values it needs to
calculate the intersections of the lines in a table and uses the
table for each step call. In this case, the object requires extra
memory. For floating-point inputs, this property must be set to
Trigonometric function. For fixed-point inputs, the property
must be set to Table lookup. The default value for this property
is Table lookup.

ThetaResolution

Spacing of the theta-axis

4-298

video.HoughLines class

Specify the spacing of the theta-axis. This property applies when
you set the SineComputation property to Table lookup.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when
you set the SineComputation property to Table lookup. The
default value for this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies when you set the SineComputation property to Table
lookup. The default value for this property is Wrap.

SineTableDataType

Sine table word and fraction lengths

Specify the sine table fixed-point data type as a constant property
always set to Custom. This property applies when you set the
SineComputation property to Table lookup.

CustomSineTableDataType

Sine table word and fraction lengths

Specify the sine table fixed-point type as an unscaled numerictype
object with a Signedness of Auto. This property applies when
you set the SineComputation property to Table lookup, and the
SineTableDataType property to Custom. The default value of this
property is numerictype([],16).

ProductDataType

Product word and fraction lengths

4-299

video.HoughLines class

Specify the product fixed-point data type as Same as first
input, Custom. This property applies when you set the
SineComputation property to Table lookup. The default value
for this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when
you set the SineComputation property to Table lookup, and the
ProductDataType property to Custom. The default value of this
property is numerictype([],32,16).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Custom. This property applies when you set the
SineComputation property to Table lookup. The default value
for this property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when
you set the SineComputation property to Table lookup, and the
AccumulatorDataType property to Custom. The default value of
this property is numerictype([],32,16).

Methods clone Create hough lines object with
same property values

getNumInputs Number of expected inputs to
step method

4-300

video.HoughLines class

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Output intersection coordinates
of a line described by a theta and
rho pair and reference image
boundary lines

Examples Use Hough lines to detect the longest line in an image. Use the edge
detection object to find edges in the intensity image. This step method
outputs a binary image required by the HoughTransform object and
improves the efficiency of the HoughLines object.

I = imread('circuit.tif');
hedge = video.EdgeDetector;
hhoughtrans = video.HoughTransform(pi/360, ...
'ThetaRhoOutputPort', true);
hfindmax = video.LocalMaximaFinder(1, ...
'HoughMatrixInput', true);
H = video.HoughLines('SineComputation', ...
'Trigonometric function');

% Find the edges in the intensity image
BW = step(hedge, I);
% Run the edge output through the transform
[ht, theta, rho] = step(hhoughtrans, BW);
% Find the location of the max value in the Hough matrix.
idx = step(hfindmax, ht);
% Find the longest line.
linepts = step(H,theta(idx(2)),rho(idx(1)),I);

% View the image superimposed with the longest line.
imshow(I); hold on;

4-301

video.HoughLines class

line(linepts([2 4]), linepts([1 3]),'color',[1 1 0]);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Hough Lines block reference page. The object properties correspond
to the block parameters.

See Also video.HoughTransform | video.LocalMaximaFinder |
video.EdgeDetector

4-302

video.HoughLines.clone

Purpose Create hough lines object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a HoughLines System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-303

video.HoughLines.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-304

video.HoughLines.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-305

video.HoughLines.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the HoughLines
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-306

video.HoughLines.step

Purpose Output intersection coordinates of a line described by a theta and rho
pair and reference image boundary lines

Syntax PTS = step(H,THETA,RHO,REFIMG)

Description PTS = step(H,THETA,RHO,REFIMG) outputs PTS as the zero-based row
and column positions of the intersections between the lines described by
THETA and RHO and two of the reference image boundary lines.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-307

video.HoughTransform class

Purpose Find lines in images via Hough transform

Description The HoughTransform object finds lines in images via Hough transform.
The Hough transform maps points in the Cartesian image space to
curves in the Hough parameter space using the following equation:

rho x theta y theta= +* cos() * sin()

Here, rho denotes the distance from the origin to the line along a

vector perpendicular to the line, and theta denotes the angle between
the x-axis and this vector. This object computes the parameter space
matrix, whose rows and columns correspond to the rho and theta values
respectively. Peak values in this matrix represent potential straight
lines in the input image.

Construction H = video.HoughTransform returns a Hough transform System object,
H, that implements the Hough transform to detect lines in images.

H = video.HoughTransform(’PropertyName’,PropertyValue,...)
returns a Hough transform object, H, with each specified property set to
the specified value.

H = video.HoughTransform(THETARES,
RHORES,’PropertyName’,PropertyValue,...) returns a Hough
transform object, H, with the ThetaResolution property set to
THETARES, the RhoResolution property set to RHORES, and other
specified properties set to the specified values.

Properties ThetaResolution

Theta resolution in radians

Specify the spacing of the Hough transform bins along the
theta-axis in radians, as a scalar numeric value between 0 and
pi/2. The default value of this property is pi/180.

RhoResolution

Rho resolution

4-308

video.HoughTransform class

Specify the spacing of the Hough transform bins along the
rho-axis as a scalar numeric value greater than 0. The default
value of this property is 1.

ThetaRhoOutputPort

Enable theta and rho outputs

Set this property to true for the object to output theta and rho
values. The default value of this property is false.

OutputDataType

Data type of output

Specify the data type of the output signal as double, single, or
Fixed point. The default value of this property is double.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when
you set the OutputDataType property to Fixed point. The
default value for this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies when you set the OutputDataType property to Fixed
point. The default value for this property is Saturate.

SineTableDataType

Sine table word and fraction lengths

This property is constant and is set to Custom. This property
applies when you set the OutputDataType property to Fixed
point.

4-309

video.HoughTransform class

CustomSineTableDataType

Sine table word and fraction lengths

Specify the sine table fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the OutputDataType property to Fixed point. The default
value of this property is numerictype([],16,14).

RhoDataType

Rho word and fraction lengths

This property is constant and is set to Custom. This property
applies when you set the OutputDataType property to Fixed
point.

CustomRhoDataType

Rho word and fraction lengths

Specify the rho fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies when you set
the OutputDataType property to Fixed point. The default value
of this property is numerictype([],32,16).

ProductDataType

Product word and fraction lengths

This property is constant and is set to Custom. This property
applies when you set the OutputDataType property to Fixed
point.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the OutputDataType property to Fixed point. The default
value of this property is numerictype([],32,30).

AccumulatorDataType

4-310

video.HoughTransform class

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Custom. This property applies when you set the
OutputDataType property to Fixed point. The default value of
this property is Custom.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the OutputDataType property to Fixed point. The default
value of this property is numerictype([],32,30).

HoughOutputDataType

Hough output word and fraction lengths

This property is constant and is set to Custom. This property
applies when you set the OutputDataType property to Fixed
point.

CustomHoughOutputDataType

Hough output word and fraction lengths

Specify the hough output fixed-point data type as an
unscaled numerictype object with a Signedness of Auto.
This property applies when you set the OutputDataType
property to Fixed point. The default value of this property is
numerictype(false,16).

ThetaOutputDataType

Theta output word and fraction lengths

This property is constant and is set to Custom. This property
applies when you set the OutputDataType property to Fixed
point.

CustomThetaOutputDataType

4-311

video.HoughTransform class

Theta output word and fraction lengths

Specify the theta output fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the OutputDataType property to Fixed point. The default
value of this property is numerictype([],32,16).

Methods clone Create Hough transform object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Output parameter space matrix
for binary input image matrix

Examples Compute the hough transform of an image. Use the hough transform to
detect the longest line in the image.

I = imread('circuit.tif');

% Use the EdgeDetection System object to find edges in the
% intensity image. This step outputs a binary image
% required by the HoughTransform System object and
% improves the efficiency of the HoughLines System object.
hedge = video.EdgeDetector;
hhoughtrans = video.HoughTransform(pi/360, ...
'ThetaRhoOutputPort', true);
hfindmax = video.LocalMaximaFinder(1, ...
'HoughMatrixInput', true);
hhoughlines = video.HoughLines('SineComputation', ...

4-312

video.HoughTransform class

'Trigonometric function');

% Find the edges in the intensity image
BW = step(hedge, I);
% Run the edge output through the transform
[ht, theta, rho] = step(hhoughtrans, BW);
% Find the location of the max value in the Hough matrix.
idx = step(hfindmax, ht);
% Find the longest line.
linepts = step(hhoughlines,theta(idx(2)),rho(idx(1)),I);

% View the image superimposed with the longest line.
imshow(I); hold on;
line(linepts([2 4]), linepts([1 3]));

Algorithm This object implements the algorithm, inputs, and outputs described
on the Hough Transform block reference page. The object properties
correspond to the block parameters.

See Also video.DCT2D | video.HoughLines | video.LocalMaximaFinder |
video.EdgeDetector

4-313

video.HoughTransform.clone

Purpose Create Hough transform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a HoughTransform System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-314

video.HoughTransform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-315

video.HoughTransform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-316

video.HoughTransform.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the HoughTransform
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-317

video.HoughTransform.step

Purpose Output parameter space matrix for binary input image matrix

Syntax HT = step(H,BW)
[HT,THETA,RHO] = step(H,BW)

Description HT = step(H,BW) outputs the parameter space matrix, HT , for the
binary input image matrix BW.

[HT,THETA,RHO] = step(H,BW) also returns the theta and rho
values, in vectors THETA and RHO respectively, when you set the
ThetaRhoOutputPort property to true. RHO denotes the distance from
the origin to the line along a vector perpendicular to the line, and
THETA denotes the angle between the x-axis and this vector. This
object computes the parameter space matrix, whose rows and columns
correspond to the rho and theta values respectively. Peak values in this
matrix represent potential straight lines in the input image.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-318

video.IDCT2D class

Purpose Compute 2-D inverse discrete cosine transform

Description The IDCT2D object computes 2-D inverse discrete cosine transform of
the input signal. The number of rows and columns of the input matrix
must be a power of 2.

Construction H = video.IDCT2D returns a System object, H, used to compute the
two-dimensional inverse discrete cosine transform (2-D IDCT) of a real
input signal.

H = video.IDCT2D(’PropertyName’,PropertyValue,...) returns
a 2-D inverse discrete cosine transform System object, H, with each
specified property set to the specified value.

Properties SineComputation

Specify how the System object computes sines and cosines as
Trigonometric function, or Table lookup. This property must
be set to Table lookup for fixed-point inputs.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when
you set the SineComputation to Table lookup. The default value
for this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies when you set the SineComputation to Table lookup. The
default value for this property is Wrap.

SineTableDataType

4-319

video.IDCT2D class

Sine table word-length designation

Specify the sine table fixed-point data type as Same word length
as input, or Custom. This property applies when you set the
SineComputation to Table lookup. The default value for this
property is Same word length as input.

CustomSineTableDataType

Sine table word length

Specify the sine table fixed-point type as a signed, unscaled
numerictype object. This property applies when you set
the SineComputation to Table lookup and you set the
SineTableDataType property to Custom. The default value of this
property is numerictype(true,16).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Internal rule, Same
as first input, or Custom. This property applies when you set
the SineComputation to Table lookup. The default value for
this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a signed, scaled
numerictype object. This property applies when you set the
SineComputation to Table lookup, and the ProductDataType
property to Custom. The default value of this property is
numerictype(true,32,30).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Internal
rule, Same as input,Same as product, Same as first input,
Custom. This property applies when you set the SineComputation

4-320

video.IDCT2D class

property to Table lookup. The default value of this property is
Internal rule.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a signed, scaled
numerictype object. This property applies when you set the
SineComputation to Table lookup, and AccumulatorDataType
property to Custom. The default value of this property is
numerictype(true,32,30).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Internal rule, Same
as first input, or Custom. This property applies when you set
the SineComputation to Table lookup. The default value for
this property is Custom.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a signed, scaled
numerictype object. This property applies when you set the
SineComputation to Table lookup, and the OutputDataType
property to Custom. The default value of this property is
numerictype(true,16,15).

Methods clone Create 2-D inverse discrete cosine
transform object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

4-321

video.IDCT2D class

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute 2-D inverse discrete
cosine transform of the input

Examples Use 2-D discrete cosine transform (DCT) to analyze the energy content
in an image. Set the DCT coefficients lower than a threshold of 0.
Reconstruct the image using 2-D inverse discrete cosine transform
(IDCT).

hdct2d = video.DCT2D;
I = double(imread('cameraman.tif'));
J = step(hdct2d, I);
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar

hidct2d = video.IDCT2D;
J(abs(J) < 10) = 0;
It = step(hidct2d, J);
figure, imshow(I, [0 255]), title('Original image')
figure, imshow(It,[0 255]), title('Reconstructed image')

Algorithm This object implements the algorithm, inputs, and outputs described on
the 2-D IDCT block reference page. The object properties correspond
to the block parameters.

See Also video.DCT2D | signalblks.DCT | signalblks.IDCT

4-322

video.IDCT2D.clone

Purpose Create 2-D inverse discrete cosine transform object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates a IDCT2D System object C, with the same property
values as H. The clone method creates a new unlocked object.

4-323

video.IDCT2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-324

video.IDCT2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-325

video.IDCT2D.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the IDCT2D System
object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-326

video.IDCT2D.step

Purpose Compute 2-D inverse discrete cosine transform of the input

Syntax Y = step(H,X)

Description Y = step(H,X) computes the 2-D inverse discrete cosine transform, Y ,
of input X.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-327

video.IFFT2D class

Purpose Two–dimensional inverse discrete Fourier transform

Description The video.IFFT2D object computes the inverse 2D discrete Fourier
transform (IDFT) of a two-dimensional input matrix. Both the row and
column dimensions of the input matrix must be powers of two. The
object uses one or more of the following fast Fourier transform (FFT)
algorithms depending on the complexity of the input and whether the
output is in linear or bit-reversed order:

• Double-signal algorithm

• Half-length algorithm

• Radix-2 decimation-in-time (DIT) algorithm

• Radix-2 decimation-in-frequency (DIF) algorithm

Construction H = video.IFFT2D returns a 2D IFFT object, H, with the default
property and value pair settings.

H = video.IFFT2D('PropertyName',PropertyValue, ...) returns a
2D IFFT object, H, with each property set to the specified value.

Properties TableOptimization

Optimization of trigonometric values table

Select the optimization of the trigonometric values table as Speed
or Memory. The property must be Speed for fixed-point inputs.
The default value for this property is Speed.

BitReversedInput

Indicates whether input is in bit-reversed order

Set this property to true if the order of 2D FFT transformed
input elements are in bit-reversed order. The default value of this
property is false, which denotes linear ordering.

ConjugateSymmetricInput

Indicates whether input is conjugate symmetric

4-328

video.IFFT2D class

Set this property to true if the input is conjugate symmetric.
The 2D DFT of a real valued signal is conjugate symmetric and
setting this property to true optimizes the 2D IFFT computation
method. Setting this property to false for conjugate symmetric
inputs results in complex output values with nonzero imaginary
parts. Setting this property to true for non conjugate symmetric
inputs results in invalid outputs. This property must be false for
fixed-point inputs. The default value of this property is true.

Normalize

Divide output by FFT length

Specify if the 2D IFFT output should be divided by the FFT
length. The value of this property defaults to true and divides
each element of the output by the product of the row and column
dimensions of the input matrix.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies only
when the TableOptimization property is Speed. The default
value for this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies only when the TableOptimization property is Speed. The
default value for this property is Wrap.

SineTableDataType

Sine table word and fraction lengths

4-329

video.IFFT2D class

Specify the sine table data type as Same word length as input,
Custom. This property applies only when the TableOptimization
property is Speed. The default value for this property is Same
word length as input.

CustomSineTableDataType

Sine table word and fraction lengths

Specify the sine table fixed-point type as an unscaled numerictype
object with a Signedness of Auto. This property applies only
when the TableOptimization property is Speed and the
SineTableDataType property is Custom. The default value of this
property is numerictype([],16).

ProductDataType

Product word and fraction lengths

Specify the product data type as Internal rule, Same as
input, or Custom. This property applies only when the
TableOptimization property is Speed. The default value for this
property is Internal rule.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies only
when the TableOptimization property is Speed and the
ProductDataType property is Custom. The default value of this
property is numerictype([],32,30).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator data type as Internal rule, Same as
input, Same as product, or Custom. This property applies only
when the TableOptimization property is Speed. The default
value for this property is Internal rule.

4-330

video.IFFT2D class

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies only
when the TableOptimization property is Speed and the
AccumulatorDataType property is Custom. The default value of
this property is numerictype([],32,30).

OutputDataType

Output word and fraction lengths

Specify the output data type as Internal rule, Same as
input, or Custom. This property applies only when the
TableOptimization property is Speed. The default value for this
property is Internal rule.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies only when the
TableOptimization property is Speed and the OutputDataType
property is Custom. The default value of this property is
numerictype([],16,15).

Methods clone Create IFFT2D object with same
property values

getNumInputs Returns number of expected
inputs to step method

getNumOutputs Returns number of outputs of
step method

4-331

video.IFFT2D class

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute 2D inverse discrete
Fourier transform

Examples Use the 2D IFFT object to convert an intensity image.

hfft2d = video.FFT2D;
hifft2d = video.IFFT2D;
% Read in the image
xorig = single(imread('cameraman.tif'));
% Convert the image from the spatial
% to frequency domain and back
Y = step(hfft2d, xorig);
xtran = step(hifft2d, Y);
% Display the newly generated intensity image
imshow(abs(xtran), []);

Algorithm This object implements the algorithm, inputs, and outputs described on
the 2-D IFFT block reference page. The object properties correspond to
the Simulink block parameters.

See Also video.FFT2D | video.DCT2D | video.IDCT2D

4-332

video.IFFT2D.clone

Purpose Create IFFT2D object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an instance of the current IFFT2D object with the
same property values. The clone method creates a new unlocked object

4-333

video.IFFT2D.getNumInputs

Purpose Returns number of expected inputs to step method

Syntax getNumInputs(H)

Description getNumInputs(H) returns the number of expected inputs to the step
method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-334

video.IFFT2D.getNumOutputs

Purpose Returns number of outputs of step method

Syntax getNumOutputs(H)

Description getNumOutputs(H) returns the number of output arguments from the
step method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-335

video.IFFT2D.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax isLocked(H)

Description isLocked(H) returns the locked state of the IFFT2D object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-336

video.IFFT2D.step

Purpose Compute 2D inverse discrete Fourier transform

Syntax Y = step(H,X)

Description Y = step(H,X) computes the 2D inverse discrete Fourier transform
(IDFT), Y , of an M-by-N input matrix X , where M and N are integer
powers of two.

4-337

video.ImageComplementer class

Purpose Compute complement of pixel values in binary, intensity, or RGB
images

Description The ImageComplementer object computes the complement of pixel
values in binary, intensity, or RGB images. For binary images, the
object replaces pixel values equal to 0 with 1 and pixel values equal to 1
with 0. For an intensity or RGB image, the object subtracts each pixel
value from the maximum value that can be represented by the input
data type and outputs the difference.

Construction H = video.ImageComplementer returns an image complement System
object, H, that computes the complement of a binary, intensity, or RGB
image.

H =
video.ImageComplementer(’PropertyName’,PropertyValue,...)
returns an image complementer object, H, with each specified
property set to the specified value.

Methods clone Create image complementer
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute complement of input
image

Examples Compute the complement of an input image.

himgcomp = video.ImageComplementer;

4-338

video.ImageComplementer class

hautoth = video.Autothresholder;
% Read in image
I = imread('coins.png');
% Convert the image to binary
bw = step(hautoth, I);
% Take the image complement
Ic = step(himgcomp, bw);
% Display the results
figure;
subplot(2,1,1), imshow(bw), title('Original Binary image')
subplot(2,1,2), imshow(Ic), title('Complemented image')

Algorithm This object implements the algorithm, inputs, and outputs described
on the Image Complement block reference page. The object properties
correspond to the block parameters.

See Also video.Autothresholder

4-339

video.ImageComplementer.clone

Purpose Create image complementer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an ImageComplementer System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-340

video.ImageComplementer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-341

video.ImageComplementer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-342

video.ImageComplementer.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
ImageComplementer System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-343

video.ImageComplementer.step

Purpose Compute complement of input image

Syntax Y = step(H,X)

Description Y = step(H,X) computes the complement of an input image X.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-344

video.ImageDataTypeConverter class

Purpose Convert and scale input image to specified output data type

Description The ImageDataTypeConverter object converts and scales an input
image to a specified output data type. When converting between
floating-point data types, the object casts the input into the output data
type and clips values outside the range to 0 or 1. When converting
between all other data types, the object casts the input into the output
data type and scales the data type values into the dynamic range of the
output data type. For double- and single-precision floating-point data
types, the dynamic range is between 0 and 1. For fixed-point data types,
the dynamic range is between the minimum and maximum values that
can be represented by the data type.

Construction H = video.ImageDataTypeConverter returns a System object, H, that
converts the input image to a single precision data type.

H =
video.ImageDataTypeConverter(’PropertyName’,PropertyValue,...)
returns an image data type conversion object, H, with each specified
property set to the specified value.

Properties OutputDataType

Data type of output

Specify the data type of the output signal as double, single,
int8, uint8, int16, uint16, boolean, or Custom. The default
value for this property is single.

Fixed-Point Properties

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a signed or unsigned,
scalednumerictype object. This property applies when you set the
OutputDataType property to Custom. The default value of this
property is numerictype([],16,0).

4-345

video.ImageDataTypeConverter class

Methods clone Create image data type converter
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Convert data type of input image

Examples Convert the image datatype from uint8 to single.

x = imread('pout.tif');
hidtypeconv = video.ImageDataTypeConverter;
y = step(hidtypeconv, x);
imshow(y);
whos y % Image has been converted from uint8 to single.

Algorithm This object implements the algorithm, inputs, and outputs described
on the Image Data Type Conversion block reference page. The object
properties correspond to the block parameters.

See Also video.ColorSpaceConverter

4-346

video.ImageDataTypeConverter.clone

Purpose Create image data type converter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a ImageDataTypeConverter System object C,
with the same property values as H. The clone method creates a new
unlocked object.

4-347

video.ImageDataTypeConverter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-348

video.ImageDataTypeConverter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-349

video.ImageDataTypeConverter.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
ImageDataTypeConverter System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-350

video.ImageDataTypeConverter.step

Purpose Convert data type of input image

Syntax Y = step(H,X)

Description Y = step(H,X) converts the input image X to Y . The data type of Y is
specified by the OutputDataType property.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-351

video.ImageFilter class

Purpose Perform 2-D FIR filtering of input matrix

Description The ImageFilter object performs 2-D FIR filtering of input matrix.

Construction H = video.ImageFilter returns a System object, H, that performs
two-dimensional FIR filtering of input matrix using the specified filter
coefficient matrix.

H = video.ImageFilter(’PropertyName’,PropertyValue,...)
returns an image filter System object, H, with each specified property
set to the specified value.

Properties SeparableCoefficients

Set to true if filter coefficients are separable

Using separable filter coefficients reduces the amount of
calculations the object must perform to compute the output.
The function isfilterseparable can be used to check filter
separability. The default value of this property is false.

CoefficientsSource

Source of filter coefficients

Indicate how to specify the filter coefficients as Property or Input
port. The default value of this property is Property.

Coefficients

Filter coefficients

Specify the filter coefficients as a real or complex-valued matrix.
This property applies when you set the SeparableCoefficients
property to false and the CoefficientsSource property to
Property. The default value of this property is [1 0; 0 -1].

VerticalCoefficients

Vertical filter coefficients for the separable filter

4-352

video.ImageFilter class

Specify the vertical filter coefficients for the separable
filter as a vector. This property applies when you set
the SeparableCoefficients property to true and the
CoefficientsSource property to Property. The default value of
this property is [4 0].

HorizontalCoefficients

Horizontal filter coefficients for the separable filter

Specify the horizontal filter coefficients for the separable
filter as a vector. This property applies when you set
the SeparableCoefficients property to true and the
CoefficientsSource property to Property. The default value of
this property is [4 0].

OutputSize

Output size as full, valid or same as input image size

Specify how to control the size of the output as Full, Same as
first input, or Valid. If you set this property to Full, the
dimensions of the output image are as follows:

output rows = input rows + filter coefficient rows + 1
output columns = input columns + filter coefficient columns + 1

If you set this property to Same as first input, the output has
the same dimensions as the input image.

If you set this property to Valid, the object filters the input image
only where the coefficient matrix fits entirely within it, so no
padding is required. In this case, the dimensions of the output
image are as follows:

output rows = input rows - filter coefficient rows + 1
output columns = input columns - filter coefficient columns + 1

The default value for this property is Full.

PaddingMethod

How to pad boundary of input matrix

4-353

video.ImageFilter class

Specify how to pad the boundary of input matrix as Constant,
Replicate, Symmetric, or Circular. Set this property to one of
the following:

• Constant to pad the input matrix with a constant value

• Replicate to pad the input matrix by repeating its border
values

• Symmetric to pad the input matrix with its mirror image

• Circular to pad the input matrix using a circular repetition
of its elements

This property applies when you set the OutputSize property to
Full or Same as first input.

The default value for this property is Constant.

PaddingValueSource

Source of padding value

Specify how to define the constant boundary value as Property
or Input port. This property applies when you set the
PaddingMethod property to Constant. The default value of this
property is Property.

PaddingValue

Constant value with which to pad matrix

Specify a constant value with which to pad the input matrix. This
property applies when you set the PaddingMethod property to
Constant and the PaddingValueSource property to Property.
The default value of this property is 0. This property is tunable.

Method

Method for filtering input matrix

4-354

video.ImageFilter class

Specify the method by which the object filters the input matrix as
Convolution or Correlation. The default value of this property
is Convolution.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap, or Saturate. The default
value for this property is Wrap.

CoefficientsDataType

Coefficients word and fraction lengths

Specify the coefficients fixed-point data type as Same word
length as input, or Custom. This property applies when you
set the CoefficientsSource property to Property. The default
value of this property is Custom.

CustomCoefficientsDataType

Coefficients word and fraction lengths

Specify the coefficients fixed-point type as a signed numerictype
object with a Signedness of Auto. This property applies when
you set the CoefficientsSource property to Property and the
CoefficientsDataType property to Custom. The default value of
this property is numerictype([],16).

ProductDataType

Product word and fraction lengths

4-355

video.ImageFilter class

Specify the product fixed-point data type as Same as input, or
Custom. The default value of this property is Custom

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the ProductDataType property to Custom. The default value of
this property is numerictype([],32,10).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Same as input, or Custom. The default value of this
property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the AccumulatorDataType property to Custom. The default
value of this property is numerictype([],32,10).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as input,
Custom. The default value for this property is Same as input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies when you set
the OutputDataType property to Custom. The default value of this
property is numerictype([],32,12).

4-356

video.ImageFilter class

Methods clone Create image filter object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Filter input image

Examples Filter an image to enhance the edges of 45 degree

img = im2single(rgb2gray(imread('peppers.png')));
hfir2d = video.ImageFilter;
hfir2d.Coefficients = [1 0; 0 -.5];
fImg = step(hfir2d, img);
subplot(2,1,1);imshow(img);title('Original image')
subplot(2,1,2);imshow(fImg);title('Filtered image')

Algorithm This object implements the algorithm, inputs, and outputs described
on the 2-D FIR Filter block reference page. The object properties
correspond to the block parameters.

See Also video.MedianFilter2D

4-357

video.ImageFilter.clone

Purpose Create image filter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an ImageFilter System object C, with the same
property values as H. The clone method creates a new unlocked object
with uninitialized states.

4-358

video.ImageFilter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-359

video.ImageFilter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-360

video.ImageFilter.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the ImageFilter
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-361

video.ImageFilter.step

Purpose Filter input image

Syntax Y = step(H,I)
Y = step(H,I,COEFFS)
Y = step(H,I,HV,HH)
Y = step(H,...,PVAL)

Description Y = step(H,I) filters the input image I and returns the filtered image
in Y.

Y = step(H,I,COEFFS) uses filter coefficients, COEFFS, to filter the
input image when you set the CoefficientsSource property to Input
port and the SeparableCoefficients property to false.

Y = step(H,I,HV,HH) uses vertical filter coefficients, HV , and
horizontal coefficients, HH , to filter the input image when you
set the CoefficientsSource property to Input port and the
SeparableCoefficients property to true.

Y = step(H,...,PVAL) uses PVAL for the pad value when you set the
OutputSize property to either Full or Same as first input, the
PaddingMethod property to Constant, and the PaddingValueSource
property to Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-362

video.ImagePadder class

Purpose Pad or crop input image along its rows, columns, or both

Description The ImagePadder object pads or crop input image along its rows,
columns, or both.

Construction HIMPAD = video.ImagePadder returns an image padder System object,
HIMPAD, that performs two-dimensional padding and/or cropping of an
input image.

HIMPAD =
video.ImagePadder(’PropertyName’,PropertyValue,...)
returns an image padder object, HIMPAD, with each specified
property set to the specified value.

Properties Method

How to pad input image

Specify how to pad the input image as Constant, Replicate,
Symmetric, or Circular. The default value for this property is
Constant.

PaddingValueSource

How to specify pad value

Indicate how to specify the pad value as either Property or Input
port. This property applies when you set the Method property to
Constant. The default value of this property is Property.

PaddingValue

Pad value

Specify the constant scalar value with which to pad the image.
This property applies when you set the Method property to
Constant and the PaddingValueSource property to Property.
The default value of this property is 0. This property is tunable.

SizeMethod

How to specify output image size

4-363

video.ImagePadder class

Indicate how to pad the input image to obtain the output image
by specifying Pad size, or Output size. When this property is
Pad size, the size of the padding in the vertical and horizontal
directions are specified. When this property is Output size, the
total number of output rows and output columns are specified.
The default value of this property is Pad size.

RowPaddingLocation

Location at which to add rows

Specify the direction in which to add rows to as Top, Bottom,
Both top and bottom, or None. Set this property to Top to add
additional rows to the top of the image, Bottom to add additional
rows to the bottom of the image, Both top and bottom to add
additional rows to the top and bottom of the image, and None to
maintain the row size of the input image. The default value of this
property is Both top and bottom.

NumPaddingRows

Number of rows to add

Specify the number of rows to be added to the top, bottom,
or both sides of the input image as a scalar value. When the
RowPaddingLocation property is Both top and bottom, this
property can also be set to a two element vector, where the first
element controls the number of rows the System object adds to
the top of the image and the second element controls the number
of rows the System object adds to the bottom of the image. This
property applies when you set the SizeMethod property to Pad
size and the RowPaddingLocation property is not set to None.
The default value of this property is [2 3].

NumOutputRowsSource

How to specify number of output rows

Indicate how to specify the number of output rows as Property or
Next power of two. If this property is Next power of two, the
System object adds rows to the input image until the number of

4-364

video.ImagePadder class

rows is equal to a power of two. This property applies when you
set the SizeMethod property to Output size. The default value of
this property is Property.

NumOutputRows

Total number of rows in output

Specify the total number of rows in the output as a scalar integer.
If the specified number is smaller than the number of rows of
the input image, then image is cropped. This property applies
when you set the SizeMethod property to Output size and the
NumOutputRowsSource property to Property. The default value of
this property is 12.

ColumnPaddingLocation

Location at which to add columns

Specify the direction in which to add columns one of Left, Right,
Both left and right, or None. Set this property to Left to add
additional columns on the left side of the image, Right to add
additional columns on the right side of the image, Both left and
right to add additional columns on the left and right side of the
image, and None to maintain the column length of the input image.
The default value for this property is Both left and right.

NumPaddingColumns

Number of columns to add

Specify the number of columns to be added to the left, right,
or both sides of the input image as a scalar value. When the
ColumnPaddingLocation property is Both left and right, this
property can also be set to a two element vector, where the first
element controls the number of columns the System object adds
to the left side of the image and the second element controls the
number of columns the System object adds to the right side of
the image. This property applies when you set the SizeMethod
property to Pad size and the NumPaddingColumns property is not
set to None. The default value of this property is 2.

4-365

video.ImagePadder class

NumOutputColumnsSource

How to specify number of output columns

Indicate how to specify the number of output columns as Property
or Next power of two. If you set this property to Next power
of two, the System object adds columns to the input until the
number of columns is equal to a power of two. This property
applies when you set the SizeMethod property to Output size.
The default value of this property is Property.

NumOutputColumns

Total number of columns in output

Specify the total number of columns in the output as a scalar
integer. If the specified number is smaller than the number of
columns of the input image, then image is cropped. This property
applies when you set the SizeMethod property to Output size
and the NumOutputColumnsSource property to Property. The
default value of this property is 10.

Methods clone Create image padder object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Perform two-dimensional padding
or cropping of input

Examples Pad two rows to the bottom, and three columns to the right of an image.
Use the value of the last array element as the padding value.

4-366

video.ImagePadder class

himpad = video.ImagePadder('Method', 'Replicate', ...
'RowPaddingLocation', 'Bottom', ...
'NumPaddingRows', 2, ...
'ColumnPaddingLocation', 'Right', ...
'NumPaddingColumns', 3);
x = [1 2;3 4];
y = step(himpad,x);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Image Pad block reference page. The object properties correspond
to the block parameters.

See Also video.GeometricScaler

4-367

video.ImagePadder.clone

Purpose Create image padder object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a ImagePadder System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-368

video.ImagePadder.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-369

video.ImagePadder.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-370

video.ImagePadder.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the ImagePadder
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-371

video.ImagePadder.step

Purpose Perform two-dimensional padding or cropping of input

Syntax Y = step(H,X)
Y = step(H,X,PAD)

Description Y = step(H,X) performs two-dimensional padding or cropping of input,
X.

Y = step(H,X,PAD) performs two-dimensional padding and/or cropping
of input, X, using the input PAD as the pad value. This applies when you
set the Method property to Constant and the PaddingValueSource
property to Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-372

video.LocalMaximaFinder class

Purpose Find local maxima in matrices

Description The LocalMaximaFinder object finds local maxima in matrices.

Construction H = video.LocalMaximaFinder returns a local maxima finder System
object, H, that finds local maxima in input matrices.

H =
video.LocalMaximaFinder(’PropertyName’,PropertyValue,...)
returns a local maxima finder object, H, with each specified
property set to the specified value.

H =
video.LocalMaximaFinder(MAXNUM,NEIGHBORSIZE,’PropertyName’,PropertyVal
returns a local maxima finder object, H, with the
MaximumNumLocalMaxima property set to MAXNUM, NeighborhoodSize
property set to NEIGHBORSIZE, and other specified properties set to
the specified values.

Properties MaximumNumLocalMaxima

Maximum number of maxima to find

Specify the maximum number of maxima to find as a positive
scalar integer value. The default value of this property is 2.

NeighborhoodSize

Neighborhood size for zero-ing out values

Specify the size of the neighborhood around the maxima, over
which the System object zeros out values, as a 2-element vector of
positive odd integers. The default value of this property is [5 7].

ThresholdSource

Source of threshold

Specify how to enter the threshold value as Property, or Input
port. The default value for this property is Property.

Threshold

4-373

video.LocalMaximaFinder class

Value that all maxima should match or exceed

Specify the threshold value as a scalar of MATLAB built-in
numeric data type. This property applies when you set the
ThresholdSource property to Property. The default value of this
property is 10. This property is tunable.

HoughMatrixInput

Indicator of Hough Transform matrix input

Set this property to true if the input is antisymmetric about

the rho axis and the theta value ranges from −
2
to


2
radians,

which correspond to a Hough matrix. The default value of this
property is false.

IndexDataType

Data type of index values

Specify the data type of index values as double, single , uint8,
uint16, or uint32. The default value for this property is uint32.

CountDataType

Data type of value that represents number of maxima

Specify the data type of the value that represents the number
of maxima as double, single, uint8, uint16, or uint32. The
default value for this property is uint32.

Methods clone Create local maxima finder object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

4-374

video.LocalMaximaFinder class

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Find local maxima in input image

Examples Find a local maxima in an input.

img = [0 0 0 0 0 0 0 0 0 0 0 0; ...
0 0 0 1 1 2 3 2 1 1 0 0; ...
0 0 0 1 2 3 4 3 2 1 0 0; ...
0 0 0 1 3 5 7 5 3 1 0 0; ...
0 0 0 1 2 3 4 3 2 1 0 0; ...
0 0 0 1 1 2 3 2 1 1 0 0; ...
0 0 0 0 0 0 0 0 0 0 0 0] / 7; % local max at row 3, col 6
hfindmax=video.LocalMaximaFinder;
hfindmax.NeighborhoodSize=[3 3];
hfindmax.Threshold=.7;
[index,count] = step(hfindmax, img);
index(:,count)

Algorithm This object implements the algorithm, inputs, and outputs described
on the Find Local Maxima block reference page. The object properties
correspond to the block parameters.

See Also video.HoughTransform | video.HoughLines | signalblks.Maximum

4-375

video.LocalMaximaFinder.clone

Purpose Create local maxima finder object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an LocalMaximaFinder System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-376

video.LocalMaximaFinder.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-377

video.LocalMaximaFinder.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-378

video.LocalMaximaFinder.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
LocalMaximaFinder System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-379

video.LocalMaximaFinder.step

Purpose Find local maxima in input image

Syntax [IDX,COUNT] = step(H,I)
[...] = step(H,I,THRESH)

Description [IDX,COUNT] = step(H,I) finds the local maxima in input image I
, with the coordinates of the local maxima returned in IDX and the
number of local maxima found in COUNT.

[...] = step(H,I,THRESH) finds the local maxima in input image I
, using threshold value THRESH , when the ThresholdSource property
is Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-380

video.MarkerInserter class

Purpose Draw markers on output image

Description The MarkerInserter object draws predefined markers, such as circles,
x-marks, plus signs, stars, or squares on an images by overwriting pixel
values..

Construction H = video.MarkerInserter returns a marker inserter System object,
H, that draws circles of size 3 on the input image.

H = video.MarkerInserter(’PropertyName’,PropertyValue,...)
returns a marker inserter object, H, with each specified property set to
the specified value.

Properties Shape

Shape of marker(s) to draw

Specify the type of marker(s) to draw as Circle, X-mark, Plus,
Star, or Square. The default value of this property is Circle.

Size

Size of marker

Specify the size of the marker, in pixels, as a scalar value greater
than or equal to 1. The default value of this property is 3. This
property is tunable.

Fill

Enable filling marker

Set this property to true to fill the marker with an intensity value
or a color. This property applies when you set the Shape property
to Circle or Square. The default value of this property is false.

BorderColorSource

Source of border color

Specify how the marker’s border color is provided as Input port,
Property. This property applies either when you set the Shape

4-381

video.MarkerInserter class

property to X-mark, Plus, or Star, or when you set the Shape
property to Circle or Square, and the Fill property to false.
When you set BorderColorSource to Input port, a border color
vector must be provided as an input to the System object’s step
method. The default value of this property is Property.

BorderColor

Border color of marker

Specify the border color of the marker as Black, White, or Custom.
If this property is set to Custom, the CustomBorderColor property
is used to specify the value. This property applies when the
BorderColorSource property is enabled and set to Property. The
default value of this property is Black.

CustomBorderColor

Intensity or color value for marker’s border

Specify an intensity or color value for the marker’s border. If the
input is an intensity image, this property can be set to a scalar
intensity value for one marker or R-element vector where R is the
number of markers. If the input is a color image, this property
can be set to a P-element vector where P is the number of color
planes or a P-by-R matrix where P is the number of color planes
and R is the number of markers. This property applies when you
set the BorderColor property to Custom. This property is tunable
when the Antialiasing property is false. The default value of
this property is [200 120 50].

FillColorSource

Source of fill color

Specify how the marker’s fill color is provided as Input port, or
Property. This property applies when you set the Shape property
to Circle or Square, and the Fill property to true. When this
property is set to Input port, a fill color vector must be provided
as an input to the System object’s step method. The default value
of this property is Property.

4-382

video.MarkerInserter class

FillColor

Fill color of marker

Specify the color to fill the marker as Black, White , or Custom.
If this property is set to Custom, the CustomFillColor property
is used to specify the value. This property applies when the
FillColorSource property is enabled and set to Property. The
default value of this property is Black.

CustomFillColor

Intensity or color value for marker’s interior

Specify an intensity or color value to fill the marker. If the input
is an intensity image, this property can be set to a scalar intensity
value for one marker or R-element vector where R is the number
of markers. If the input is a color image, this property can be set
to a P-element vector where P is the number of color planes or a
P-by-R matrix where P is the number of color planes and R is
the number of markers. This property applies when you set the
FillColor property to Custom. This property is tunable when
the Antialiasing property is false. The default value of this
property is [200 120 50].

Opacity

Opacity of shading inside marker

Specify the opacity of the shading inside the marker by a scalar
value between 0 and 1, where 0 is transparent and 1 is opaque.
This property applies when you set the Fill property to true.
This property is tunable. The default value of this property is 0.6.

ROIInputPort

Enable defining a region of interest to draw marker

Set this property to true to specify a region of interest (ROI) on
the input image through an input to the step method. If the
property is set to false, the object uses the entire image. The
default value of this property is false.

4-383

video.MarkerInserter class

Antialiasing

Enable performing smoothing algorithm on marker

Set this property to true to perform a smoothing algorithm on the
marker. This property applies when you do not set the Shape
property to Square or Plus. The default value of this property is
false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when
you set the Fill property to true and/or the Antialiasing
property to true. The default value of this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies when you set the Fill property to true and/or the
Antialiasing property to true. The default value of this property
is Wrap.

OpacityDataType

Opacity word length

Specify the opacity fixed-point data type as Same word length
as input or Custom. This property applies when you set the Fill
property to true. The default value for this property is Custom.

CustomOpacityDataType

Opacity word length

Specify the opacity fixed-point type as an unscaled numerictype
object with a Signedness of Auto. This property applies when

4-384

video.MarkerInserter class

you set the Fill property to true and the OpacityDataType
property to Custom. The default value of this property is
numerictype([],16).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as first
input or Custom. This property applies when you set the Fill
property to true and/or the Antialiasing property to true. The
default value of this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the Fill property to true and/or the Antialiasing property
to true, and the ProductDataType property to Custom. The
default value of this property is numerictype([],32,14).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Same as first input, or Custom. This property applies
when you set the Fill property to true and/or the Antialiasing
property to true. The default value of this property is Same as
product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the Fill property to true and/or the Antialiasing property
to true, and the AccumulatorDataType property to Custom. The
default value of this property is numerictype([],32,14);

4-385

video.MarkerInserter class

Methods clone Create marker inserter object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Draw specified marker on input
image

Examples Draw plus signs on an input image

hmarkerinserter = video.MarkerInserter;
hmarkerinserter.Shape = 'Plus';
I = im2double(imread('cameraman.tif'));
Pts = [10 10; 20 20; 30 30]';
y = step(hmarkerinserter, I, Pts);
imshow(y);

Algorithm This object implements the algorithm, inputs, and outputs described
on the Draw Markers block reference page. The object properties
correspond to the block parameters, except for:

• The Image signal block parameter allows you to specify whether
the block accepts the color video signal as One multidimensional
signal or Separate color signals. The object does not have a
property that corresponds to the Image signal block parameter.
You must always provide the input image to the step method of the
object as a single multidimensional signal.

See Also video.ShapeInserter

4-386

video.MarkerInserter.clone

Purpose Create marker inserter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an MarkerInserter System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-387

video.MarkerInserter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-388

video.MarkerInserter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-389

video.MarkerInserter.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the MarkerInserter
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-390

video.MarkerInserter.step

Purpose Draw specified marker on input image

Syntax Y = step(H,I,PTS)
Y = step(H,I,PTS,ROI)
Y = step(H,I,PTS,...,CLR)

Description Y = step(H,I,PTS) draws the specified marker on the input image I at
the locations specified by PTS . The PTS input is a 2-by-N matrix of row
and column pairs, where N is the total number of markers and each row
and column pair defines a zero-based marker’s center. The markers are
embedded on the output image Y.

Y = step(H,I,PTS,ROI) draws the specified marker only in a
rectangular area defined by the ROI when you set the ROIInputPort
property to true. The ROI input is a four-element vector of integers,
where the first two elements represent the zero-based row and column
coordinates of the upper-left corner of the area and the second two
elements represent the height and width of the area.

Y = step(H,I,PTS,...,CLR) uses the border or fill color CLR to
draw the border or fill the specified marker, when you set the
BorderColorSource property or the FillColorSource property to
Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-391

video.Maximum class

Purpose Find maximum values in input or sequence of inputs

Description The Maximum object finds maximum values in an input or sequence of
inputs.

Construction H = video.Maximum returns an object, H, that computes the value and
index of the maximum elements in an input or a sequence of inputs.

H = video.Maximum('PropertyName',PropertyValue,...) returns
a maximum-finding object, H, with each specified property set to the
specified value.

Properties ValueOutputPort

Output maximum value

Set this property to true to output the maximum (when
RunningMaximum is false) or the running maximum (when
RunningMaximum is true). The default value of this property is
true.

RunningMaximum

Calculate over single input or multiple inputs

When you set this property to true, the object computes the
maximum value over a sequence of inputs. When you set this
property to false, the object computes the maximum value over
the current input. The default value of this property is false.

IndexOutputPort

Output the index of the maximum value

Set this property to true to output the index of the maximum
value of the input. This property applies only when you set the
RunningMaximum property to false. The default value of this
property is true.

ResetInputPort

Additional input to enable resetting of running maximum

4-392

video.Maximum class

Set this property to true to enable resetting of the running
maximum. When you set this property to true, a reset input must
be specified to the step method to reset the running maximum.
This property applies only when you set the RunningMaximum
property to true. The default value of this property is false.

ResetCondition

Condition that triggers resetting of running maximum

Specify the event that resets the running maximum as Rising
edge, Falling edge, Either edge, or Non-zero. This property
applies only when you set the ResetInputPort property to true.
The default value of this property is Non-zero.

IndexBase

Numbering base for index of maximum value

Specify the numbering used when computing the index of the
maximum value as starting from either One or Zero. This property
applies only when you set the IndexOutputPort property to true.
The default value of this property is One.

Dimension

Dimension to operate along

Specify how the maximum calculation is performed over the data
as All, Row, Column, or Custom. This property applies only when
you set the RunningMaximum property to false. The default value
for this property is Column.

CustomDimension

Numerical dimension to calculate over

Specify the integer dimension of the input signal over which the
object finds the maximum. The value of this property cannot
exceed the number of dimensions in the input signal. This
property only applies when you set the Dimension property to
Custom. The default value of this property is 1.

4-393

video.Maximum class

ROIProcessing

Enable region-of-interest processing

Set this property to true to enable calculation of the maximum
value within a particular region of an image. This property
applies when you set the Dimension property to All and the
RunningMaximum property to false. The default value of this
property is false.

ROIForm

Type of region of interest

Specify the type of region of interest as Rectangles, Lines, Label
matrix, or Binary mask. This property applies only when you set
the ROIProcessing property to true. The default value of this
property is Rectangles.

ROIPortion

Calculate over entire ROI or just perimeter

Specify whether to calculate the maximum over the Entire ROI
or the ROI perimeter. This property applies only when you set
the ROIForm property to Rectangles. The default value of this
property is Entire ROI.

ROIStatistics

Calculate statistics for each ROI or one for all ROIs

Specify whether to calculate Individual statistics for each
ROI or a Single statistic for all ROIs. This property applies
only when you set the ROIForm property to Rectangles, Lines,
or Label matrix.

ValidityOutputPort

Output flag indicating if any part of ROI is outside input image

When you set the ROIForm property to Lines or Rectangles, set
this property to true to return the validity of the specified ROI
being completely inside of the image. When you set the ROIForm

4-394

video.Maximum class

property to Label Matrix, set this property to true to return
the validity of the specified label numbers. The default value of
this property is false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Action to take when integer input is out-of-range

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap.

ProductDataType

Data type of product

Specify the product fixed-point data type as Same as input or
Custom. The default value of this property is Same as input.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object. This property applies only when you set the
AccumulatorDataType property to Custom. The default value of
this property is numerictype(true,32,30).

AccumulatorDataType

Data type of accumulator

Specify the accumulator fixed-point data type as Same as
product, Same as input, or Custom. The default value of this
property is Same as product.

4-395

video.Maximum class

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled
numerictype object. This property applies only when you set the
AccumulatorDataType property to Custom. The default value of
this property is numerictype(true,32,30).

Methods clone Create maximum object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

reset Reset computation of running
maximum

step Compute maximum value

Examples Determine the maximum value and its index in a grayscale image.

img = im2single(rgb2gray(imread('peppers.png')));
hmax = video.Maximum;
[m, ind] = step(hmax, img);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Maximum block reference page. The object properties correspond to
the block parameters, except for:

• Only the block supports the Treat sample-based row input as
column parameter.

4-396

video.Maximum class

See Also signalblks.Maximum | video.Mean | video.Minimum

4-397

video.Maximum.clone

Purpose Create maximum object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a Maximum object C, with the same property
values as H. The clone method creates a new unlocked object with
uninitialized states.

4-398

video.Maximum.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-399

video.Maximum.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-400

video.Maximum.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the Maximum System
object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-401

video.Maximum.reset

Purpose Reset computation of running maximum

Syntax reset(H)

Description reset(H) resets the computation of the running maximum for the
Maximum object H.

4-402

video.Maximum.step

Purpose Compute maximum value

Syntax [VAL,IND] = step(H,X)
VAL = step(H,X)
IND = step(H,X)
VAL = step(H,X,R)
[...] = step(H,I,ROI)
[...] = step(H,I,LABEL,LABELNUMBERS)
[...,FLAG] = step(H,I,ROI)
[...,FLAG] = step(H,I,LABEL,LABELNUMBERS)

Description [VAL,IND] = step(H,X) returns the maximum value, VAL, and the
index or position of the maximum value, IND, along a dimension of X
specified by the value of the Dimension property.

VAL = step(H,X) returns the maximum value, VAL, of the input X.
When the RunningMaximum property is true, VAL corresponds to the
maximum value over a sequence of inputs.

IND = step(H,X) returns the zero- or one-based index IND of
the maximum value. To enable this type of processing, set the
IndexOutputPort property to true and the ValueOutputPort and
RunningMaximum properties to false.

VAL = step(H,X,R) computes the maximum value, VAL, over a
sequence of inputs, and resets the state of H based on the value of
reset signal, R, and the ResetCondition property. To enable this
type of processing, set the RunningMaximum property to true and the
ResetInputPort property to true.

[...] = step(H,I,ROI) computes the maximum of an input image,
I, within the given region of interest, ROI. To enable this type of
processing, set the ROIProcessing property to true and the ROIForm
property to Lines, Rectangles or Binary mask.

[...] = step(H,I,LABEL,LABELNUMBERS) computes the maximum of
an input image, I, for a region whose labels are specified in the vector
LABELNUMBERS. To enable this type of processing, set the ROIProcessing
property to true and the ROIForm property to Label matrix.

4-403

video.Maximum.step

[...,FLAG] = step(H,I,ROI) also returns FLAG, indicating whether
the given region of interest is within the image bounds. To enable this
type of processing, set the ROIProcessing and ValidityOutputPort
properties to true and the ROIForm property to Lines, Rectangles
or Binary mask.

[...,FLAG] = step(H,I,LABEL,LABELNUMBERS) also returns FLAG,
indicating whether the input label numbers are valid. To enable this
type of processing, set the ROIProcessing and ValidityOutputPort
properties to true and the ROIForm property to Label matrix.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-404

video.Mean class

Purpose Find mean value of input or sequence of inputs

Description The Mean object finds the mean of an input or sequence of inputs.

Construction H = video.Mean returns an object, H, that computes the mean of an
input or a sequence of inputs.

H = video.Mean('PropertyName',PropertyValue,...) returns a
mean-finding object, H, with each specified property set to the specified
value.

Properties RunningMean

Calculate over single input or multiple inputs

When you set this property to true, the object calculates the mean
over a sequence of inputs. When you set this property to false,
the object computes the mean over the current input. The default
value of this property is false.

ResetInputPort

Additional input to enable resetting of running mean

Set this property to true to enable resetting of the running
mean. When you set this property to true, a reset input must be
specified to the step method to reset the running mean. This
property applies only when you set the RunningMean property to
true. The default value of this property is false.

ResetCondition

Condition that triggers resetting of running mean

Specify the event that resets the running mean as Rising edge,
Falling edge, Either edge, or Non-zero. This property applies
only when you set the ResetInputPort property to true. The
default value of this property is Non-zero.

Dimension

Dimension to operate along

4-405

video.Mean class

Specify how the mean calculation is performed over the data as
All, Row, Column, or Custom. This property applies only when
you set the RunningMean property to false. The default value
of this property is All.

CustomDimension

Numerical dimension to calculate over

Specify the integer dimension, indexed from one, of the input
signal over which the object calculates the mean. The value of this
property cannot exceed the number of dimensions in the input
signal. This property only applies when you set the Dimension
property to Custom. The default value of this property is 1.

ROIProcessing

Enable region-of-interest processing

Set this property to true to enable calculation of the mean within
a particular region of an image. This property applies when you
set the Dimension property to All and the RunningMean property
to false. The default value of this property is false.

ROIForm

Type of region of interest

Specify the type of region of interest as Rectangles, Lines, Label
matrix, or Binary mask. This property applies only when you set
the ROIProcessing property to true. The default value of this
property is Rectangles.

ROIPortion

Calculate over entire ROI or just perimeter

Specify whether to calculate the mean over the Entire ROI or
the ROI perimeter. This property applies only when you set
the ROIForm property to Rectangles. The default value of this
property is Entire ROI.

ROIStatistics

4-406

video.Mean class

Calculate statistics for each ROI or one for all ROIs

Specify whether to calculate Individual statistics for each
ROI or a Single statistic for all ROIs. This property applies
only when you set the ROIForm property to Rectangles, Lines, or
Label matrix. The default value of this property is Individual
statistics for each ROI.

ValidityOutputPort

Output flag indicating if any part of ROI is outside input image

When you set the ROIForm property to Lines or Rectangles, set
this property to true to return the validity of the specified ROI
being completely inside of the image. When you set the ROIForm
property to Label Matrix, set this property to true to return
the validity of the specified label numbers. The default value of
this property is false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Action to take when integer input is out-of-range

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap.

AccumulatorDataType

Data type of accumulator

Specify the accumulator fixed-point data type as Same as input,
or Custom. The default value of this property is Same as input.

4-407

video.Mean class

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled
numerictype object. This property applies only when you set the
AccumulatorDataType property to Custom. The default value of
this property is numerictype(true,32,30).

OutputDataType

Data type of output

Specify the output fixed-point data type as Same as accumulator,
Same as input, or Custom. The default value of this property is
Same as accumulator.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object.
This property applies only when you set the OutputDataType
property to Custom. The default value of this property is
numerictype(true,32,30).

Methods clone Create mean object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Return the number of outputs
from step method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

4-408

video.Mean class

reset Reset computation of running
mean

step Compute mean of input

Examples Determine the mean of a grayscale image.

img = im2single(rgb2gray(imread('peppers.png')));
hmean = video.Mean;
m = step(hmean,img);

Algorithm This object implements the algorithm, inputs, and outputs described
on the Mean block reference page. The object properties correspond to
the block parameters, except for:

• Only the block supports the parameter Treat sample-based row
input as column.

See Also signalblks.Mean | video.Maximum | video.Minimum

4-409

video.Mean.clone

Purpose Create mean object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a Mean object C, with the same property values as
H. The clone method creates a new unlocked object with uninitialized
states.

4-410

video.Mean.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-411

video.Mean.getNumOutputs

Purpose Return the number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-412

video.Mean.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the Mean System
object..

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-413

video.Mean.reset

Purpose Reset computation of running mean

Syntax reset(H)

Description reset(H) resets the computation of the running mean for the Mean
object H.

4-414

video.Mean.step

Purpose Compute mean of input

Syntax Y = step(H,X)
Y = step(H,X,R)
Y = step(H,X,ROI)
Y = step(H,X,LABEL,LABELNUMBERS)
[Y,FLAG] = step(H,X,ROI)
[Y,FLAG] = step(H,X,LABEL,LABELNUMBERS)

Description Y = step(H,X) computes the mean of X. When you set the RunningMean
property to true, Y corresponds to the mean of the input elements over
time.

Y = step(H,X,R) computes the mean value, Y, of the input elements
over time, and optionally resets the computation of the running
mean based on the value of reset signal, R, and the value of the
ResetCondition property. To enable this type of processing, set the
RunningMean property to true and the ResetInputPort property to
true.

Y = step(H,X,ROI) computes the mean of input image X within the
given region of interest ROI. To enable this type of processing, set the
ROIProcessing property to true and the ROIForm property to Lines,
Rectangles or Binary mask.

Y = step(H,X,LABEL,LABELNUMBERS) computes the mean of the
input image, X, for the region whose labels are specified in the vector
LABELNUMBERS. The regions are defined and labeled in the matrix LABEL.
To enable this type of processing, set the ROIProcessing property to
true and the ROIForm property to Label matrix.

[Y,FLAG] = step(H,X,ROI) also returns FLAG, indicating whether the
given region of interest ROI, is within the image bounds. To enable this
type of processing, set the the ROIProcessing and ValidityOutputPort
properties to true and the ROIForm property to Lines, Rectangles
or Binary mask.

[Y,FLAG] = step(H,X,LABEL,LABELNUMBERS) also returns FLAG which
indicates whether the input label numbers are valid. To enable this

4-415

video.Mean.step

type of processing, set the ROIProcessing and ValidityOutputPort
properties to true and the ROIForm property to Label matrix.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-416

video.Median class

Purpose Find median values in an input.

Description The Median object finds median values in an input.

Construction H = video.Median returns a System object, H, that computes the
median of the input or a sequence of inputs.

H = video.Median(’PropertyName’,PropertyValue,...) returns
a median System object, H, with each specified property set to the
specified value.

Properties SortMethod

Sort method

Specify the sort method used for calculating the median as Quick
sort or Insertion sort.

Dimension

Dimension with which to operate along

Specify how the calculation is performed over the data as All,
Row, Column, or Custom. The default value of this property is All

CustomDimension

Numerical dimension over which to calculate

Specify the integer dimension of the input signal over which the
object calculates the mean. The value of this property cannot
exceed the number of dimensions in the input signal. This
property only applies when you set the Dimension property to
Custom. The default value of this property is 1.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

4-417

video.Median class

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Action to take when integer input is out-of-range

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap.

ProductDataType

Product output word and fraction lengths

Specify the product output fixed-point data type as Same as
input or Custom. The default value of this property is Same as
input.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object. This property applies when you set the ProductDataType
property to Custom. The default value of this property is
numerictype(true,32,30).

AccumulatorDataType

Data type of accumulator

Specify the accumulator fixed-point data type as Same as input,
or Custom. The default value of this property is Same as input.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled
numerictype object. This property applies only when you set the
AccumulatorDataType property to Custom. The default value of
this property is numerictype(true,32,30).

OutputDataType

4-418

video.Median class

Data type of output

Specify the output fixed-point data type as Same as accumulator,
Same as input, or Custom. The default value of this property is
Same as accumulator.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object.
This property applies only when you set the OutputDataType
property to Custom. The default value of this property is
numerictype(true,32,30).

Methods clone Create median object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute median of input

Examples Determine the median in a grayscale image.

img = im2single(rgb2gray(imread('peppers.png')));
hmdn = video.Median;
med = step(hmdn,img);

Algorithm This object implements the algorithm, inputs, and outputs described
on the Median block reference page. The object properties correspond
to the block parameters.

4-419

video.Median class

See Also signalblks.Median

4-420

video.Median.clone

Purpose Create median object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an Median System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-421

video.Median.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-422

video.Median.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-423

video.Median.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the Median System
object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-424

video.Median.step

Purpose Compute median of input

Syntax Y = step(H,X)

Description Y = step(H,X) computes median of input X.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-425

video.MedianFilter2D class

Purpose 2D median filtering

Description The MedianFilter2D object performs 2D median filtering.

Construction H = video.MedianFilter2D returns a 2D median filtering object, H,
that performs two-dimensional median filtering of an input matrix.

H = video.MedianFilter2D('PropertyName',PropertyValue, ...)
returns a median filter object, H, with each property set to the specified
value.

H = video.MedianFilter2D(SIZE,'PropertyName',
PropertyValue, ...) returns a median filter object, H, with the
NeighborhoodSize property set to SIZE and other properties set to
the specified values.

Properties NeighborhoodSize

Size of neighborhood to compute the median

Specify the size of the neighborhood over which the median filter
computes the median. This property is either a positive integer
that represents the number of rows and columns in a square
matrix, or a two-element vector that represents the number of
rows and columns in a rectangular matrix. The median filter
does not support fixed-point properties when both neighborhood
dimensions are odd. This property defaults to[3 3].

OutputSize

Output matrix size

Specify the output size as Same as input size or Valid. If the
property value is Valid, the 2D median filter only computes the
median where the neighborhood fits entirely within the input
image and requires no padding. In this case, the dimensions of
the output image are:

output rows = input rows - neighborhood rows + 1

4-426

video.MedianFilter2D class

output columns = input columns - neighborhood
columns + 1

Otherwise, the output has the same dimensions as the input
image. The default value for this property is Same as input
size.

PaddingMethod

Input matrix boundary padding method

Specifies how to pad the boundary of the input matrix as
Constant, Replicate, Symmetric, or Circular. Set this property
to Constant to pad the matrix with a constant value, Replicate
to pad the input matrix by repeating its border values, Symmetric
to pad the input matrix with its mirror image, and Circular to
pad the input matrix using a circular repetition of its elements.
This property applies only when the OutputSize property is Same
as input size. The default value for this property is Constant.

PaddingValueSource

Source of constant boundary value

Specifies how to define the constant boundary value as
Property or Input port. This property applies only when the
PaddingMethod property is Constant. The default value for this
property is Property.

PaddingValue

Constant padding value for input matrix

Specifies a constant value to pad the input matrix. This property
applies only when the PaddingMethod property is Constant and
the PaddingValueSource property is Property. The default value
of this property is 0. This property is tunable.

Fixed-Point Properties

RoundingMethod

4-427

video.MedianFilter2D class

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies only
when the NeighborhoodSize property corresponds to even
neighborhood options. The default value for this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property is
applies only when the NeighborhoodSize property corresponds
to even neighborhood options. The default value for this property
is Wrap.

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
input or Custom. This property applies only when the
NeighborhoodSize property corresponds to even neighborhood
options. The default value for this property is Same as input.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies
only when the AccumulatorDataType property is Custom
and the NeighborhoodSize property corresponds to even
neighborhood options. The default value of this property is
numerictype([],32,30).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as inputor
Custom. This property applies only when the NeighborhoodSize

4-428

video.MedianFilter2D class

property corresponds to even neighborhood options. The default
value for this property is Same as input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies only when the
OutputDataType property is Custom and the NeighborhoodSize
property corresponds to even neighborhood options. The default
value of this property is numerictype([],16,15).

Methods clone Create 2D median filter with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Perform median filtering on input
image

Examples Perform median filtering on an image with additive salt and pepper
noise:

img = im2single(rgb2gray(imread('peppers.png')));
img = imnoise(img, 'salt & pepper'); % add some noise
imshow(img);
hmedianfilt = video.MedianFilter2D([5 5]);
filtered = step(hmedianfilt, img);
pause(2);
imshow(filtered);

4-429

video.MedianFilter2D class

Algorithm This object implements the algorithm, inputs, and outputs described
on the Median Filter block reference page. The object properties
correspond to the block parameters.

See Also video.ImageFilter

4-430

video.MedianFilter2D.clone

Purpose Create 2D median filter with same property values

Syntax C = clone(H)

Description C = clone(H) creates a MedianFilter2D System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-431

video.MedianFilter2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-432

video.MedianFilter2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-433

video.MedianFilter2D.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the MedianFilter2D
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-434

video.MedianFilter2D.step

Purpose Perform median filtering on input image

Syntax I2 = step(H,I1)
I2 = step(H,I1,PVAL)

Description I2 = step(H,I1) performs median filtering on the input image I1
and returns the filtered image I2.

I2 = step(H,I1,PVAL) performs median filtering on input image I1
, using PVAL for the padding value. This option applies when you set
the OutputSize property to Same as input size, the PaddingChoice
property to Constant, and the PaddingValueSource property to Input
port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-435

video.Minimum class

Purpose Find minimum values in input or sequence of inputs

Description The Minimum object finds minimum values in an input or sequence of
inputs.

Construction H = video.Minimum returns an object, H, that computes the value and
index of the minimum elements in an input or a sequence of inputs.

H = video.Minimum('PropertyName',PropertyValue,...) returns
a minimum-finding object, H, with each specified property set to the
specified value.

Properties ValueOutputPort

Output minimum value

Set this property to true to output the minimum (when
RunningMinimum is false) or the running minimum (when
RunningMinimum is true). The default value of this property is
true.

RunningMinimum

Calculate over single input or multiple inputs

When you set this property to true, the object computes the
minimum value over a sequence of inputs. When you set this
property to false, the object computes the minimum value over
the current input. The default value of this property is false.

IndexOutputPort

Output the index of the minimum value

Set this property to true to output the index of the minimum
value of the input. This property applies only when you set the
RunningMinimum property to false. The default value of this
property is true.

ResetInputPort

Additional input to enable resetting of running minimum

4-436

video.Minimum class

Set this property to true to enable resetting of the running
minimum. When you set this property to true, a reset input must
be specified to the step method to reset the running minimum.
This property applies only when you set the RunningMinimum
property to true. The default value of this property is false.

ResetCondition

Condition that triggers resetting of running minimum

Specify the event that resets the running minimum as Rising
edge, Falling edge, Either edge, or Non-zero. This property
applies only when you set the ResetInputPort property to true.
The default value of this property is Non-zero.

IndexBase

Numbering base for index of minimum value

Specify the numbering used when computing the index of the
minimum value as starting from either One or Zero. This property
applies only when you set the IndexOutputPort property to true.
The default value of this property is One.

Dimension

Dimension to operate along

Specify how the minimum calculation is performed over the data
as All, Row, Column, or Custom. This property applies only when
you set the RunningMinimum property to false. The default value
of this property is Column.

CustomDimension

Numerical dimension to calculate over

Specify the integer dimension of the input signal over which the
object finds the minimum. The value of this property cannot
exceed the number of dimensions in the input signal. This
property only applies when you set the Dimension property to
Custom. The default value of this property is 1.

4-437

video.Minimum class

ROIProcessing

Enable region-of-interest processing

Set this property to true to enable calculation of the minimum
value within a particular region of an image. This property
applies when you set the Dimension property to All and the
RunningMinimum property to false. The default value of this
property is false.

ROIForm

Type of region of interest

Specify the type of region of interest as Rectangles, Lines, Label
matrix, or Binary mask. This property applies only when you set
the ROIProcessing property to true. The default value of this
property is Rectangles.

ROIPortion

Calculate over entire ROI or just perimeter

Specify whether to calculate the minimum over the Entire ROI
or the ROI perimeter. This property applies only when you set
the ROIForm property to Rectangles. The default value of this
property is Entire ROI.

ROIStatistics

Calculate statistics for each ROI or one for all ROIs

Specify whether to calculate Individual statistics for each
ROI or a Single statistic for all ROIs. This property applies
only when you set the ROIForm property to Rectangles, Lines,
or Label matrix.

ValidityOutputPort

Output flag indicating if any part of ROI is outside input image

When you set the ROIForm property to Lines or Rectangles, set
this property to true to return the validity of the specified ROI
being completely inside of the image. When you set the ROIForm

4-438

video.Minimum class

property to Label Matrix, set this property to true to return
the validity of the specified label numbers. The default value of
this property is false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value of this
property is Floor.

OverflowAction

Action to take when integer input is out-of-range

Specify the overflow action as Wrap or Saturate. The default
value of this property is Wrap.

ProductDataType

Data type of product

Specify the product fixed-point data type as Same as input or
Custom. The default value of this property is Same as input.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object. This property applies only when you set the
AccumulatorDataType property to Custom. The default value of
this property is numerictype(true,32,30).

AccumulatorDataType

Data type of accumulator

Specify the accumulator fixed-point data type as Same as
product, Same as input, or Custom. The default value of this
property is Same as product.

4-439

video.Minimum class

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled
numerictype object. This property applies only when you set the
AccumulatorDataType property to Custom. The default value of
this property is numerictype(true,32,30).

Methods clone Create minimum object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

reset Reset computation of running
minimum

step Compute minimum value

Examples Determine the minimum value and its index in a grayscale image.

img = im2single(rgb2gray(imread('peppers.png')));
hmax = video.Minimum;
[m, ind] = step(hmax, img);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Minimum block reference page. The object properties correspond to
the block parameters, except for:

• Only the block supports the Treat sample-based row input as
column parameter.

4-440

video.Minimum class

See Also signalblks.Maximum | video.Maximum | video.Mean

4-441

video.Minimum.clone

Purpose Create minimum object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a Minimum object C, with the same property
values as H. The clone method creates a new unlocked object with
uninitialized states.

4-442

video.Minimum.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-443

video.Minimum.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-444

video.Minimum.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the Minimum System
object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-445

video.Minimum.reset

Purpose Reset computation of running minimum

Syntax reset(H)

Description reset(H) resets computation of the running minimum for the Minimum
object H.

4-446

video.Minimum.step

Purpose Compute minimum value

Syntax [VAL,IND] = step(H,X)
VAL = step(H,X)
IND = step(H,X)
VAL = step(H,X,R)
[...] = step(H,I,ROI)
[...] = step(H,I,LABEL,LABELNUMBERS)
[...,FLAG] = step(H,I,ROI)
[...,FLAG] = step(H,I,LABEL,LABELNUMBERS)

Description [VAL,IND] = step(H,X) returns the minimum value, VAL, and the
index or position of the minimum value, IND, along a dimension of X
specified by the value of the Dimension property.

VAL = step(H,X) returns the minimum value, VAL, of the input X.
When the RunningMinimum property is true, VAL corresponds to the
minimum value over a sequence of inputs.

IND = step(H,X) returns the zero- or one-based index IND of
the minimum value. To enable this type of processing, set the
IndexOutputPort property to true and the ValueOutputPort and
RunningMinimum properties to false.

VAL = step(H,X,R) computes the minimum value, VAL, over a sequence
of inputs, and resets the state of H based on the value of reset signal, R,
and the ResetCondition property. To enable this type of processing,
set the RunningMinimum property to true and the ResetInputPort
property to true.

[...] = step(H,I,ROI) computes the minimum of an input image,
I, within the given region of interest, ROI. To enable this type of
processing, set the ROIProcessing property to true and the ROIForm
property to Lines, Rectangles or Binary mask.

[...] = step(H,I,LABEL,LABELNUMBERS) computes the minimum of
an input image, I, for a region whose labels are specified in the vector
LABELNUMBERS. To enable this type of processing, set the ROIProcessing
property to true and the ROIForm property to Label matrix.

4-447

video.Minimum.step

[...,FLAG] = step(H,I,ROI) also returns FLAG, indicating whether
the given region of interest is within the image bounds. To enable this
type of processing, set the ROIProcessing and ValidityOutputPort
properties to true and the ROIForm property to Lines, Rectangles
or Binary mask.

[...,FLAG] = step(H,I,LABEL,LABELNUMBERS) also returns FLAG,
indicating whether the input label numbers are valid. To enable this
type of processing, set the ROIProcessing and ValidityOutputPort
properties to true and the ROIForm property to Label matrix.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-448

video.MorphologicalBottomHat class

Purpose Bottom-hat filtering on image

Description The MorphologicalBottomHat object performs bottom-hat filtering on
an intensity or binary image. Bottom-hat filtering is the equivalent
of subtracting the input image from the result of performing a
morphological closing operation on the input image. The bottom-hat
filtering object uses flat structuring elements only.

Construction H = video.MorphologicalBottomHat returns a bottom-hat filtering
object, H, that performs bottom-hat filtering on an intensity or binary
image using a predefined neighborhood or structuring element.

H =
video.MorphologicalBottomHat('PropertyName,PropertyValue,
...) returns a bottom-hat filtering object, H, with each property set to
the specified value.

Properties ImageType

Specify type of input image or video stream

Specify the type of the input image as Intensity or Binary. The
default value of this property is Intensity.

NeighborhoodSource

Source of neighborhood values

Specify how to enter neighborhood or structuring element values
as one of Property or Input port. If set to Property, use the
Neighborhood property to specify the neighborhood or structuring
element values. Otherwise, specify the neighborhood using an
input to the step method. Note that you can specify structuring
elements only by using the Neighborhood property. You can not
specify structuring elements as inputs to the step method. The
default value of this property is Property.

Neighborhood

Neighborhood or structuring element values

4-449

video.MorphologicalBottomHat class

This property applies only when you set the NeighborhoodSource
property to Property. If specifying a neighborhood, this property
must be a matrix or vector of 1s and 0s. If specifying a structuring
element, use the strel function. The default value of this
property is strel('octagon',15).

Methods clone Create morphological bottom hat
filter with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Perform bottom-hat filtering on
input image

Examples Perform bottom-hat filtering on an image.

I = im2single(imread('blobs.png'));
hbot = video.MorphologicalBottomHat('Neighborhood',...
strel('disk', 5));
J = step(hbot,I);
figure;
subplot(1,2,1),imshow(I); title('Original image');
subplot(1,2,2),imshow(J);
title('Bottom-hat filtered image');

Algorithm This object implements the algorithm, inputs, and outputs described on
the Bottom-hat block reference page. The object properties correspond
to the block parameters.

4-450

video.MorphologicalBottomHat class

See Also strel | video.MorphologicalTopHat | video.MorphologicalClose

4-451

video.MorphologicalBottomHat.clone

Purpose Create morphological bottom hat filter with same property values

Syntax C = clone(H)

Description C = clone(H) creates an instance of the current morphological bottom
hat object with the same property values. The clone method creates a
new unlocked object.

4-452

video.MorphologicalBottomHat.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-453

video.MorphologicalBottomHat.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-454

video.MorphologicalBottomHat.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
MorphologicalBottomHat System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-455

video.MorphologicalBottomHat.step

Purpose Perform bottom-hat filtering on input image

Syntax Y = step(H,I)
Y = step(H,I,NHOOD)

Description Y = step(H,I) performs bottom-hat filtering on the input image, I ,
and returns the filtered image Y.

Y = step(H,I,NHOOD) performs bottom-hat filtering on the input
image, I using NHOOD as the neighborhood when you set the
NeighborhoodSource property to Input port. The object returns the
filtered image in the output Y.

4-456

video.MorphologicalClose class

Purpose Perform morphological closing on image

Description The MorphologicalClose object performs morphological closing on
an intensity or binary image. The MorphologicalClose System object
performs a dilation operation followed by an erosion operation using a
predefined neighborhood or structuring element. This System object
uses flat structuring elements only.

Construction H = video.MorphologicalClose returns a System object, H, that
performs morphological closing on an intensity or binary image.

H =
video.MorphologicalClose(’PropertyName’,PropertyValue,...)
returns a morphological closing System object, H, with each specified
property set to the specified value.

Properties NeighborhoodSource

Source of neighborhood values

Specify how to enter neighborhood or structuring element
values as Property or Input port. If set to Property, use the
Neighborhood property to specify the neighborhood or structuring
element values. Otherwise, specify the neighborhood using an
input to the step method. Note that structuring elements can
only be specified using Neighborhood property and they cannot
be used as input to the step method. The default value for this
property is Property.

Neighborhood

Neighborhood or structuring element values

This property is applicable when the NeighborhoodSource
property is set to Property. If you are specifying a neighborhood,
this property must be a matrix or vector of 1s and 0s. If you are
specifying a structuring element, use the strel function. The
default value of this property is strel('line',5,45).

4-457

video.MorphologicalClose class

Methods clone Create morphological close object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Perform morphological closing on
input image

Examples Perform morphological closing on an image.

img = im2single(imread('blobs.png'));
hclosing = video.MorphologicalClose;
hclosing.Neighborhood = strel('disk', 10);
closed = step(hclosing, img);
figure;
subplot(1,2,1),imshow(img); title('Original image');
subplot(1,2,2),imshow(closed); title('Closed image');

Algorithm This object implements the algorithm, inputs, and outputs described
on the Closing block reference page. The object properties correspond
to the block parameters.

See Also video.MorphologicalOpen | video.ConnectedComponentLabeler |
video.Autothresholder | strel

4-458

video.MorphologicalClose.clone

Purpose Create morphological close object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an MorphologicalClose System object C, with
the same property values as H. The clone method creates a new
unlocked object.

4-459

video.MorphologicalClose.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-460

video.MorphologicalClose.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-461

video.MorphologicalClose.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
MorphologicalClose System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-462

video.MorphologicalClose.step

Purpose Perform morphological closing on input image

Syntax IC = step(H,I)
IC = step(H,I,NHOOD)

Description IC = step(H,I) performs morphological closing on input image I.

IC = step(H,I,NHOOD) performs morphological closing on input image
I using input NHOOD as the neighborhood when the NeighborhoodSource
property is set to Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-463

video.MorphologicalDilate class

Purpose Perform morphological dilation on an image

Description The MorphologicalDilate object performs morphological dilation on
an image.

Construction H = video.MorphologicalDilate returns a System object, H, that
performs morphological dilation on an intensity or binary image.

H =
video.MorphologicalDilate(’PropertyName’,PropertyValue,...)
returns a morphological dilation System object, H, with each specified
property set to the specified value.

Properties NeighborhoodSource

Source of neighborhood values

Specify how to enter neighborhood or structuring element
values as Property or Input port. If set to Property, use the
Neighborhood property to specify the neighborhood or structuring
element values. Otherwise, specify the neighborhood using an
input to the step method. Note that structuring elements can
only be specified using Neighborhood property and they cannot
be used as input to the step method. The default value for this
property is Property.

Neighborhood

Neighborhood or structuring element values

This property is applicable when the NeighborhoodSource
property is set to Property. If you are specifying a neighborhood,
this property must be a matrix or vector of 1s and 0s. If you are
specifying a structuring element, use the strel function. The
default value of this property is [1 1; 1 1].

4-464

video.MorphologicalDilate class

Methods clone Create morphological dilate object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Operate on inputs to calculate
outputs

Examples Fuse fine discontinuities on images.

x = imread('peppers.png');
hcsc = video.ColorSpaceConverter;
hcsc.Conversion = 'RGB to intensity';
hautothresh = video.Autothresholder;
hdilate = ...

video.MorphologicalDilate('Neighborhood', ones(5,5));
x1 = step(hcsc, x);
x2 = step(hautothresh, x1);
y = step(hdilate, x2);
figure;
subplot(3,1,1),imshow(x); title('Original image');
subplot(3,1,2),imshow(x2); title('Thresholded Image');
subplot(3,1,3),imshow(y); title('Dilated Image');

Algorithm This object implements the algorithm, inputs, and outputs described
on the Dilation block reference page. The object properties correspond
to the block parameters.

4-465

video.MorphologicalDilate class

See Also video.MorphologicalErode | video.MorphologicalOpen |
video.MorphologicalClose | strel

4-466

video.MorphologicalDilate.clone

Purpose Create morphological dilate object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a MorphologicalDilate System object C, with
the same property values as H. The clone method creates a new
unlocked object.

4-467

video.MorphologicalDilate.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-468

video.MorphologicalDilate.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-469

video.MorphologicalDilate.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
MorphologicalDilate System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-470

video.MorphologicalDilate.step

Purpose Operate on inputs to calculate outputs

Syntax ID = step(H,I)
ID = step(H,I,NHOOD)

Description ID = step(H,I) performs morphological dilation on input image I and
returns the dilated image IE.

ID = step(H,I,NHOOD) uses input NHOOD as the neighborhood when the
NeighborhoodSource property is set to Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-471

video.MorphologicalErode class

Purpose Perform morphological erosion on an image

Description The MorphologicalErode object performs morphological erosion on an
image using a neighborhood specified by a square structuring element
of width 4.

Construction H = video.MorphologicalErode returns a System object, H, that
performs morphological erosion on an intensity or binary image.

H =
video.MorphologicalErode(’PropertyName’,PropertyValue,...)
returns a morphological erosion System object, H, with each specified
property set to the specified value.

Properties NeighborhoodSource

Source of neighborhood values

Specify how to enter neighborhood or structuring element
values as Property or Input port. If set to Property, use the
Neighborhood property to specify the neighborhood or structuring
element values. Otherwise, specify the neighborhood using an
input to the step method. Note that structuring elements can
only be specified using Neighborhood property and they cannot
be used as input to the step method. The default value for this
property is Property.

Neighborhood

Neighborhood or structuring element values

This property is applicable when the NeighborhoodSource
property is set to Property. If you are specifying a neighborhood,
this property must be a matrix or vector of 1s and 0s. If you are
specifying a structuring element, use the strel function. The
default value of this property is strel('square',4).

4-472

video.MorphologicalErode class

Methods clone Create morphological erode object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Perform morphological erosion on
input

Examples Erode an input image.

x = imread('peppers.png');
hcsc = video.ColorSpaceConverter;
hcsc.Conversion = 'RGB to intensity';
hautothresh = video.Autothresholder;
herode = ...

video.MorphologicalErode('Neighborhood', ones(5,5));
x1 = step(hcsc, x); % convert input to intensity
x2 = step(hautothresh, x1); % convert input to binary
y = step(herode, x2); % Perform erosion on input
figure;
subplot(3,1,1),imshow(x); title('Original image');
subplot(3,1,2),imshow(x2); title('Thresholded Image');
subplot(3,1,3),imshow(y); title('Eroded Image');

Algorithm This object implements the algorithm, inputs, and outputs described
on the Erosion block reference page. The object properties correspond
to the block parameters.

4-473

video.MorphologicalErode class

See Also video.MorphologicalDilate | video.MorphologicalOpen |
video.MorphologicalClose | strel

4-474

video.MorphologicalErode.clone

Purpose Create morphological erode object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an MorphologicalErode System object C, with
the same property values as H. The clone method creates a new
unlocked object.

4-475

video.MorphologicalErode.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-476

video.MorphologicalErode.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-477

video.MorphologicalErode.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
MorphologicalErode System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-478

video.MorphologicalErode.step

Purpose Perform morphological erosion on input

Syntax IE = step(H,I)
IE = step(H,I,NHOOD)

Description IE = step(H,I) performs morphological erosion on input image I and
returns the eroded image IE.

IE = step(H,I,NHOOD) uses input NHOOD as the neighborhood when the
NeighborhoodSource property is set to Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-479

video.MorphologicalOpen class

Purpose Perform morphological opening on an image

Description The MorphologicalOpen object performs morphological opening
on an image. The MorphologicalOpen System object performs an
erosion operation followed by a dilation operation using a predefined
neighborhood or structuring element. This System object uses flat
structuring elements only. For more information about structuring
elements, see the strel function reference page in the Image Processing
Toolbox documentation.

Construction H = video.MorphologicalOpen returns a System object, H, that
performs morphological opening on an intensity or binary image.

H =
video.MorphologicalOpen(’PropertyName’,PropertyValue,...)
returns a morphological opening System object, H, with each specified
property set to the specified value.

Properties NeighborhoodSource

Source of neighborhood values

Specify how to enter neighborhood or structuring element
values as Property or Input port. If set to Property, use the
Neighborhood property to specify the neighborhood or structuring
element values. Otherwise, specify the neighborhood using an
input to the step method. Note that structuring elements can
only be specified using Neighborhood property and they cannot
be used as input to the step method. The default value for this
property is Property.

Neighborhood

Neighborhood or structuring element values

This property applies when you set the NeighborhoodSource
property to Property. If you are specifying a neighborhood, this
property must be a matrix or vector of 1s and 0s. If you are

4-480

video.MorphologicalOpen class

specifying a structuring element, use the strel function. The
default value of this property is strel('disk',5).

Methods clone Create morphological open object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Perform morphological opening
on input image

Examples Perform opening on an image

img = im2single(imread('blobs.png'));
hopening = video.MorphologicalOpen;
hopening.Neighborhood = strel('disk', 5);
opened = step(hopening, img);
figure;
subplot(1,2,1),imshow(img); title('Original image');
subplot(1,2,2),imshow(opened); title('Opened image');

Algorithm This object implements the algorithm, inputs, and outputs described
on the Opening block reference page. The object properties correspond
to the block parameters.

See Also video.MorphologicalClose | video.ConnectedComponentLabeler |
video.Autothresholder | strel

4-481

video.MorphologicalOpen.clone

Purpose Create morphological open object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an MorphologicalOpen System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-482

video.MorphologicalOpen.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-483

video.MorphologicalOpen.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-484

video.MorphologicalOpen.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
MorphologicalOpen System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-485

video.MorphologicalOpen.step

Purpose Perform morphological opening on input image

Syntax IO = step(H,I)
IO = step(H,I,NHOOD)

Description IO = step(H,I) performs morphological opening on binary or intensity
input image I.

IO = step(H,I,NHOOD) uses input NHOOD as the neighborhood when the
NeighborhoodSource property is set to Input port.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-486

video.MorphologicalTopHat class

Purpose Top-hat filtering on image

Description The MorphologicalTopHat object performs top-hat filtering on an
intensity or binary image. Top-hat filtering is the equivalent of
subtracting the result of performing a morphological opening operation
on the input image from the input image itself. This top–hat filtering
object uses flat structuring elements only.

Construction H = video.MorphologicalTopHat returns a top–hat filtering object, H,
that performs top-hat filtering on an intensity or binary image using a
predefined neighborhood or structuring element.

H =
video.MorphologicalTopHat('PropertyName',PropertyValue,...)
returns a top-hat filtering object, H, with each property set to
the specified value.

Properties ImageType

Specify type of input image or video stream

Specify the type of input image or video stream as Intensity or
Binary. The default value of this property is Intensity.

NeighborhoodSource

Source of neighborhood values

Specify how to enter neighborhood or structuring element
values as Property or Input port. If set to Property, use the
Neighborhood property to specify the neighborhood or structuring
element values. Otherwise, specify the neighborhood using an
input to the step method. Note that structuring elements can
only be specified using the Neighborhood property. You cannot
use the structuring elements as an input to the step method. The
default value of this property is Property.

Neighborhood

Neighborhood or structuring element values

4-487

video.MorphologicalTopHat class

This property applies only when you set the NeighborhoodSource
property to Property. If specifying a neighborhood, this property
must be a matrix or vector of 1s and 0s. If specifying a structuring
element, use the strel function. The default value of this
property is strel('square',4).

Methods clone Create morphological top hat
filter with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Perform top-hat filtering on input
image

Examples Perform top-hat filtering to correct uneven illumination.

I = im2single(imread('rice.png'));
htop = video.MorphologicalTopHat('Neighborhood', ...
strel('disk', 12));
% To improve contrast of output image
hc = video.ContrastAdjuster; J = step(htop,I);
J = step(hc,J);
figure;
subplot(1,2,1),imshow(I); title('Original image');
subplot(1,2,2),imshow(J);
title('Top-hat filtered image');

Algorithm This object implements the algorithm, inputs, and outputs described
on the Top-hat block reference page. The object properties correspond
to the block parameters.

4-488

video.MorphologicalTopHat class

See Also strel | video.MorphologicalBottomHat | video.MorphologicalOpen

4-489

video.MorphologicalTopHat.clone

Purpose Create morphological top hat filter with same property values

Syntax C = clone(H)

Description C = clone(H) creates an instance of the current morphological top
hat object with the same property values. The clone method creates a
new unlocked object

4-490

video.MorphologicalTopHat.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-491

video.MorphologicalTopHat.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-492

video.MorphologicalTopHat.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
MorphologicalTopHat System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-493

video.MorphologicalTopHat.step

Purpose Perform top-hat filtering on input image

Syntax Y = step(H,I)
Y = step(H,I,NHOOD)

Description Y = step(H,I) top-hat filters the input image, I , and returns the
filtered image Y.

Y = step(H,I,NHOOD) filters the input image, I using the input NHOOD
as the neighborhood when you set the NeighborhoodSource property to
Input port. The object returns the filtered image in the output Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-494

video.MultimediaFileReader class

Purpose Read video and/or audio samples from multimedia file

Description The MultimediaFileReader object reads video and/or audio samples
from a multimedia file.

Construction H = video.MultimediaFileReader returns a multimedia file reader
System object, H, to read video and/or audio from a multimedia file.

H =
video.MultimediaFileReader(’PropertyName’,PropertyValue,...)
returns a multimedia file reader System object, H, with each specified
property set to the specified value.

H =
video.MultimediaFileReader(FILENAME,’PropertyName’,PropertyValue,...)
returns a multimedia file reader System object, H, with Filename
property set to FILENAME and other specified properties set to
the specified values.

Properties Filename

Name of multimedia file from which to read

Specify the name of the multimedia file as a string. The full
path for the file needs to be specified only if the file is not on
the MATLAB path. On UNIX® platforms, the System object
only supports uncompressed AVI files. The default value of this
property is vipmen.avi.

PlayCount

Number of times to play the file

Specify a positive integer or inf to represent the number of times
to play the file. The default value of this property is inf.

AudioOutputPort

Choose to output audio data

4-495

video.MultimediaFileReader class

Use this property to control the audio output from the multimedia
file reader. This property applies only when the multimedia file
contains both audio and video streams. The default value of this
property is false.

VideoOutputPort

Choose to output video data

Use this property to control the video output from the multimedia
file reader object. This property only applies when the file
contains both audio and video streams. The default value of this
property is false.

SamplesPerAudioFrame

Number of samples in audio frame

Specify the number of samples in an audio frame as a positive
scalar integer value. This property applies when the multimedia
file contains only audio data. The default value of this property
is 1024.

ImageColorSpace

Choose whether output is RGB, YCbCr, or intensity video

Specify whether you want the multimedia file reader object
to output RGB, YCbCr 4:2:2 or intensity video frames. This
property applies only when the multimedia file contains video.
This property can be set to RGB, Intensity, or YCbCr 4:2:2. The
default value of this property is RGB.

VideoOutputDataType

Data type of video data output

Set the data type of the video data output from the multimedia
file reader object. This property applies if the multimedia file
contains video. This property can be set to double, single, int8,
uint8, int16, uint16, int32, or Inherit. The default value of
this property is single.

4-496

video.MultimediaFileReader class

AudioOutputDataType

Data type of audio samples output

Set the data type of the audio data output from the multimedia
file reader object. This property applies only if the multimedia
file contains audio. This property can be set to double, single,
int16, or uint8. The default value of this property is int16.

Methods clone Create multimedia file reader
object with same property values

close Release resources for the
multimedia file reader object

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

info Return information about the
specified multimedia file

isDone End-of-file status (logical)

isLocked Locked status (logical) for input
attributes and non-tunable
properties

reset Reset internal states of
multimedia file reader to
read from beginning of file

step Output frame of multimedia
signal

Examples Read and play a video file.

hmfr = video.MultimediaFileReader;
hp = video.VideoPlayer;

4-497

video.MultimediaFileReader class

while ~isDone(hmfr)
videoFrame = step(hmfr);
step(hp,videoFrame);

end
close(hp);
close(hmfr);

Algorithm This object implements the algorithm, inputs, and outputs described on
the From Multimedia File block reference page. The object properties
correspond to the x block parameters, except for:

• The object has no corresponding property for the Inherit sample
time from file block parameter. The object always inherits the
sample time from the file.

• The Multimedia outputs block parameter corresponds to both the
AudioOutputPort and the VideoOutputPort object properties.

• The Image signal block parameter allows you to specify whether
the block outputs the image as One multidimensional signal or
Separate color signals. The object does not have a property that
corresponds to the Image signal block parameter. The object always
outputs the image as an M-by-N-by-P color video signal.

See Also video.MultimediaFileWriter

4-498

video.MultimediaFileReader.clone

Purpose Create multimedia file reader object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a MultimediaFileReader System object C, with
the same property values as H. The clone method creates a new unlocked
object with uninitialized states.

4-499

video.MultimediaFileReader.close

Purpose Release resources for the multimedia file reader object

Syntax close(H)

Description close(H) releases system resources (such as memory, file handles or
hardware connections).

4-500

video.MultimediaFileReader.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-501

video.MultimediaFileReader.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-502

video.MultimediaFileReader.info

Purpose Return information about the specified multimedia file

Syntax S = info(H)

Description S = info(H) returns a MATLAB structure, S , with information about
the multimedia file specified in the Filename property. The number of
fields of S varies depending on the audio/video content of the file. The
possible fields and values for the structure S are described below:

Audio Logical value indicating if the file has audio content.

Video Logical value indicating if the file has video content.

AudioSampleRateAudio sampling rate of the multimedia file in Hz.
This field applies when the file has audio content.

AudioNumBits Number of bits used to encode the audio stream.
This field applies when the file has audio content.

AudioNumChannelsNumber of audio channels. This field applies when
the file has audio content.

FrameRate Frame rate of the video stream in frames per second.
The value may vary from the actual frame rate of
the recorded video, and takes into consideration
any synchronization issues between audio and video
streams when the file contains both audio and video
content. This implies that video frames may be
dropped if the audio stream leads the video stream
by more than 1/(actual video frames per second).
This field applies when the file has video content.

VideoSize Video size as a two-element numeric vector of the
form:

[VideoWidthInPixels, VideoHeightInPixels]
This field applies when the file has video content.

VideoFormat Video signal format. This field applies when the file
has video content.

4-503

video.MultimediaFileReader.isDone

Purpose End-of-file status (logical)

Syntax TF = isDone(H)

Description TF = isDone(H) returns a logical value, STATUS , indicating if the
MultimediaFileReader System object, H , has reached the end of the
multimedia file. STATUS remains true when you set the PlayCount
property to a value greater than 1.

4-504

video.MultimediaFileReader.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
MultimediaFileReader System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-505

video.MultimediaFileReader.reset

Purpose Reset internal states of multimedia file reader to read from beginning
of file

Syntax reset(H)

Description reset(H) resets the MultimediaFileReader object to read from the
beginning of the file.

4-506

video.MultimediaFileReader.step

Purpose Output frame of multimedia signal

Syntax AUDIO = step(H)
I = step(H)
[I,AUDIO] = step(H)
[...,EOF] = step(H)
[Y,CB,CR] = step(H)
[Y,CB,CR,AUDIO] = step(H)

Description AUDIO = step(H) outputs one frame of audio samples, AUDIO . This
behavior requires an input file which contains audio data and that you
set the AudioOutputPort property to true.

I = step(H) outputs one frame of multidimensional video signal, I.
This behavior requires an input file which contains video data and that
you set the VideoOutputPort property to true.

[I,AUDIO] = step(H) outputs one frame of multidimensional video
signal, I , and one frame of audio samples, AUDIO . This behavior
requires an input file which contains audio and video data and that you
set the AudioOutputPort and VideoOutputPort properties to true.

[...,EOF] = step(H) returns the end-of-file indicator in EOF. The
object sets EOF to true each time the output contains the last audio
sample and/or video frame in the file.

[Y,CB,CR] = step(H) outputs one frame of YCbCr 4:2:2 video data in
the color components Y, CB, and CR. This behavior applies when you set
the VideoOutputPort property to true, the ImageColorSpace property
to YCbCr 4:2:2, and an input file which contains video data.

[Y,CB,CR,AUDIO] = step(H) outputs one frame of YCbCr 4:2:2 video
data in the color components Y, CB, and CR, and one frame of audio
samples in AUDIO. This applies when you set the AudioOutputPort and
VideoOutputPort properties to true, the ImageColorSpace property to
YCbCr 4:2:2, and an input file which contains audio and video data.

4-507

video.MultimediaFileReader.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-508

video.MultimediaFileWriter class

Purpose Write video frames and audio samples to multimedia file

Description The MultimediaFileWriter object writes video and/or audio samples
to a multimedia file.

Construction H = video.MultimediaFileWriter returns a multimedia file writer
System object, H, that writes uncompressed video frames to an AVI file,
output.avi.

H =
video.MultimediaFileWriter(’PropertyName’,PropertyValue,...)
returns a multimedia file writer System object, H, with each specified
property set to the specified value.

H =
video.MultimediaFileWriter(FILENAME,’PropertyName’,PropertyValue,...)
returns a multimedia file writer System object, H, with Filename
property set to FILENAME and other specified properties set to
the specified values.

Properties Filename

Multimedia output file name

Specify the name of the multimedia file as a string. The default
value of this property is output.avi.

FileFormat

Format of output file

Specify the format of the file that is created. On Windows®

platforms, this may be one of AVI, WAV, WMV, or WMA. On other
platforms, this value is restricted to AVI. The default value for this
property is AVI. These abbreviations correspond to the following
file formats:

WAV: Microsoft® WAVE Files
WMV: Windows Media Video
WMA: Windows Media Audio

4-509

video.MultimediaFileWriter class

AVI: Audio-Video Interleave

AudioInputPort

Write audio data

Use this property to control whether the object writes audio
samples to the multimedia file. When both this property and the
VideoInputPort property are enabled, the video and audio input
signals must have the same frame period. The frame size (or
number of rows) of the audio signal might need to be adjusted so
that the frame period of the video signal is the same as the frame
period of the audio signal. To calculate the frame size, divide the
frequency of the audio signal (in samples per second specified by
the SampleRate property) by the frame rate of the video signal
(in frames per second specified by the FrameRate property). The
default value for this property is false.

The multimedia file object takes a column vector as an input.
Every column is a separate channel and each row corresponds
to a single audio sample.

VideoInputPort

Write video data

Use this property to control whether the object writes video
frames to the multimedia file. When both this property and the
AudioInputPort are enabled, the video and audio input signals
must have the same frame period. The frame size (or number
of rows) of the audio signal might need to be adjusted so that
the frame period of the video signal is the same as the frame
period of the audio signal. To calculate the frame size, divide the
frequency of the audio signal (in samples per second specified by
the SampleRate property) by the frame rate of the video signal (in
frames per second specified by the FrameRate property). This
default value for this property is true.

AudioCompressor

Compression algorithm for audio data

4-510

video.MultimediaFileWriter class

Specify the type of compression algorithm to implement for audio
data. This compression reduces the size of the multimedia file.
Choose None (uncompressed) to save uncompressed audio data to
the multimedia file. The other options reflect the available audio
compression algorithms installed on your system. This property
applies when writing WAV or AVI files on Windows platforms.

VideoCompressor

Compression algorithm for video data

Specify the type of compression algorithm to use to compress the
video data. This compression reduces the size of the multimedia
file. Choose None (uncompressed) to save uncompressed
video data to the multimedia file. The other options reflect the
available video compression algorithms installed on your system.
This property applies only when writing AVI files on Windows
platforms.

SampleRate

Sampling rate of audio data stream

Specify the sampling rate of the input audio data as a positive
numeric scalar. This property applies when you set the
AudioInputPort property to true. The default value of this
property is 44100.

FrameRate

Frame rate of video data stream

Specify the frame rate of the video data in frames per second as
a positive numeric scalar. This property applies when you set
the VideoInputPort property to true. The default value of this
property is 30.

AudioDataType

Data type of the uncompressed audio

4-511

video.MultimediaFileWriter class

Specify the type of uncompressed audio data to write to the file.
Note that this parameter applies only when writing uncompressed
WAV files.

FileColorSpace

Color space for output file

Specify the color space of AVI files as RGB or YCbCr 4:2:2. This
property applies when you set the FileFormat property to AVI and
only on Windows platforms. The default value for this property
is RGB.

Methods clone Create multimedia file writer
object with same property values

close Close multimedia file

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Write input multimedia data to
file

Examples Write a video to disk.

hmfr = video.MultimediaFileReader;
hmfw = video.MultimediaFileWriter('vipmen1.avi', ...
'AudioInputPort',false, ...
'VideoInputPort',true);
while ~isDone(hmfr)
videoFrame = step(hmfr);

step(hmfw,videoFrame);

4-512

video.MultimediaFileWriter class

end
close(hmfr);
close(hmfw);

Algorithm This object implements the algorithm, inputs, and outputs described
on the To Multimedia File block reference page. The object properties
correspond to the block parameters, except for:

• The Image signal block parameter allows you to specify whether
the block accepts the color video signal as One multidimensional
signal or Separate color signals. The object does not have a
property that corresponds to the Image signal block parameter.
You must always provide the input image to the step method of the
object as a single multidimensional signal.

See Also video.MultimediaFileReader

4-513

video.MultimediaFileWriter.clone

Purpose Create multimedia file writer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an MultimediaFileWriter System object C,
with the same property values as H. The clone method creates a new
unlocked object.

4-514

video.MultimediaFileWriter.close

Purpose Close multimedia file

Syntax close(H)

Description close(H) closes the multimedia file in which the multimedia data was
written.

4-515

video.MultimediaFileWriter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-516

video.MultimediaFileWriter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-517

video.MultimediaFileWriter.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
MultimediaFileWriter System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-518

video.MultimediaFileWriter.step

Purpose Write input multimedia data to file

Syntax step(H,AUDIO)
step(H,I)
step(H,I,AUDIO)
step(H,Y,Cb,Cr)
step(H,Y,CB,CR)
step(H,Y,CB,CR,AUDIO)

Description step(H,AUDIO) writes one frame of audio samples, AUDIO, to the output
file when you set the AudioInputPort property to true. AUDIO is either
a vector or an M-by-2 matrix for mono or stereo inputs, respectively.

step(H,I) writes one frame of video, I, to the output file when you set
the VideoInputPort property to true.I can be an M-by-N-by-3 color
video signal or an M-by-N intensity video signal.

step(H,I,AUDIO) writes one frame of video, I, and one frame of
audio samples, AUDIO , to the output file when you set both the
AudioInputPort and VideoInputPort properties to true.

step(H,Y,Cb,Cr) writes one frame of video with Y, Cb, Cr components
to the file. This applies only when you set the FileColorSpace property
to YCbCr 4:2:2

step(H,Y,CB,CR) writes one frame of YCbCr 4:2:2 data in the
color components Y, CB, and CR, to the output file when you set the
VideoInputPort property to true. The width of CB and CR must be
half of the width of Y, and the value of the FileColorSpace property
must be set to YCbCr 4:2:2.

step(H,Y,CB,CR,AUDIO) writes one frame of YCbCr 4:2:2 data in
the color components Y, CB, and CR, and one frame of audio samples,
AUDIO, to the output file when you set both the AudioInputPort and
VideoInputPort properties to true. The width of CB and CR must be
half of the width of Y, and the value of the FileColorSpace property
must be set to YCbCr 4:2:2.

4-519

video.MultimediaFileWriter.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-520

video.OpticalFlow class

Purpose Estimate object velocities

Description The OpticalFlow System object estimates object velocities from one
image or video frame to another.

Construction H = video.OpticalFlow returns an optical flow System object, H, that
estimates the direction and speed of object motion from one image to
another, or from one video frame to another.

H = video.OpticalFlow(’PropertyName’,PropertyValue,...)
returns an optical flow System object, H, with each specified property
set to the specified value.

Properties Method

Algorithm to compute optical flow

Specify the algorithm to compute the optical flow as
Horn-Schunck, or Lucas-Kanade. The default value for this
property is Horn-Schunck.

ReferenceFrameSource

Source of reference frame for optical flow calculation

Specify computing optical flow between one of Property, or Input
port. When this property is set to Property, you can use the
ReferenceFrameDelay property to determine a previous frame
with which to compare. When this property is set to Input port,
an input image should be supplied for comparison.

This property applies when you set the Method property to
Horn-Schunck. This property also applies when you set the Method
property to Lucas-Kanade and the TemporalGradientFilter
property to Difference filter [-1 1]. The default value for
this property is Property.

ReferenceFrameDelay

Number of frames between reference frame and current frame

4-521

video.OpticalFlow class

Specify the number of frames between the reference and current
frame as a positive scalar integer. This property applies when you
set the ReferenceFrameSource property to Current frame and
N-th frame back. The default value of this property is 1.

Smoothness

Expected smoothness of optical flow

Specify the smoothness factor as a positive scalar number. If the
relative motion between the two images or video frames is large,
specify a large positive scalar value. If the relative motion is
small, specify a small positive scalar value. This property applies
when you set the Method property to Horn-Schunck. The default
value of this property is 1. This property is tunable.

IterationTerminationCondition

Condition to stop iterative solution computation

Specify when the optical flow iterative solution should stop
as When maximum number of iterations is reached, When
velocity difference falls below threshold, Whichever
comes first . This property applies when you set the Method
property to Horn-Schunck. The default value of this property is
When maximum number of iterations is reached.

MaximumIterationCount

Maximum number of iterations to perform

Specify the maximum number of iterations to perform in the
optical flow iterative solution computation as a positive scalar
integer. This property applies when you set the Method property
to Horn-Schunck and the IterationTerminationCondition
property to either When maximum number of iterations is
reached or Whichever comes first. The default value of this
property is 10. This property is tunable.

VelocityDifferenceThreshold

Velocity difference threshold to stop computation

4-522

video.OpticalFlow class

Specify the velocity difference threshold to stop the optical flow
iterative solution computation as a positive scalar number.
This property applies when you set the Method property to
Horn-Schunck and the IterationTerminationCondition
property to either When velocity difference falls below
threshold or Whichever comes first. The default value of this
property is eps. This property is tunable.

OutputValue

Form of velocity output

Specify the velocity output as Magnitude-squared or Horizontal
and vertical components in complex form. The default value
of this property is Magnitude-squared.

TemporalGradientFilter

Temporal gradient filter used by Lucas-Kanade algorithm

Specify the temporal gradient filter used by the Lucas-Kanade
algorithm as Difference filter [-1 1], Derivative of
Gaussian . This property applies when you set the Method
property to Lucas-Kanade. The default value of this property is
Difference filter [-1 1]

BufferedFramesCount

Number of frames to buffer for temporal smoothing

Specify the number of frames to buffer for temporal smoothing as
an odd integer between 3 and 31, both inclusive. This property
determines characteristics such as the standard deviation and the
number of filter coefficients of the Gaussian filter used to perform
temporal filtering. This property applies when you set the Method
property to Lucas-Kanade and the TemporalGradientFilter
property to Derivative of Gaussian. The default value of this
property is 3.

ImageSmoothingFilterStandardDeviation

Standard deviation for image smoothing filter

4-523

video.OpticalFlow class

Specify the standard deviation for the Gaussian filter used to
smooth the image using spatial filtering as a positive scalar
number. This property applies when you set the Method property
to Lucas-Kanade and the TemporalGradientFilter property to
Derivative of Gaussian. The default value of this property
is 1.5.

GradientSmoothingFilterStandardDeviation

Standard deviation for gradient smoothing filter

Specify the standard deviation for the filter used to smooth the
spatiotemporal image gradient components as a positive scalar
number. This property applies when you set the Method property
to Lucas-Kanade and the TemporalGradientFilter property to
Derivative of Gaussian. The default value of this property is 1.

DiscardIllConditionedEstimates

Discard normal flow estimates when constraint equation is
ill-conditioned

Set this property to true if the motion vector should be set to
0 when the optical flow constraint equation is ill-conditioned.
This property applies when you set the Method property to
Lucas-Kanade and the TemporalGradientFilter property to
Derivative of Gaussian. The default value of this property is
false. This property is tunable.

MotionVectorImageOutputport

Return image corresponding to motion vectors

Set this property to true to output the image that corresponds to
the motion vector being output by the System object. This property
applies when you set the Method property to Lucas-Kanade
and the TemporalGradientFilter property to Derivative of
Gaussian. The default value of this property is false.

NoiseReductionThreshold

Threshold for noise reduction

4-524

video.OpticalFlow class

Specify the motion threshold between each image or video frame
as a positive scalar number. The higher the number, the less small
movements impact the optical flow calculation. This property
applies when you set the Method property to Lucas-Kanade. The
default value of this property is 0.0039. This property is tunable.

Fixed-Point Properties

RoundingMethod

Rounding mode for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies
when you set the Method property to Lucas-Kanade and the
TemporalGradientFilter property to Difference filter [-1
1]. The default value of this property is Nearest.

OverflowAction

Overflow mode for fixed-point operations

Specify the overflow action as Wrap or Saturate. This property
applies when you set the Method property to Lucas-Kanade and
the TemporalGradientFilter property to Difference filter
[-1 1]. The default value of this property is Saturate.

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Custom. This property
applies when you set the Method property to Lucas-Kanade and
the TemporalGradientFilter property to Difference filter
[-1 1].

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a signed, scaled
numerictype object. You can apply this property when

4-525

video.OpticalFlow class

you set the Method property to Lucas-Kanade and the
TemporalGradientFilter property to Difference filter [-1
1]. This property applies when you set the ProductDataType
property to Custom. The default value of this property is
numerictype(true,32,20).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same
as product, or Custom . This property applies when
you set the Method property to Lucas-Kanade and the
TemporalGradientFilter property to Difference filter [-1
1]. The default value of this property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a signed, scaled
numerictype object. You can apply this property when
you set the Method property to Lucas-Kanade and the
TemporalGradientFilter property to Difference filter [-1
1]. This property applies when you set the AccumulatorDataType
property to Custom. The default value of this property is
numerictype(true,32,20).

GradientDataType

Gradients word and fraction lengths

Specify the gradient components fixed-point data type as Same
as accumulator, Same as accumulator, Same as product, or
Custom . This property applies when you set the Method property
to Lucas-Kanade and the TemporalGradientFilter property to
Difference filter [-1 1]. The default value of this property is
Same as accumulator.

CustomGradientDataType

Gradients word and fraction lengths

4-526

video.OpticalFlow class

Specify the gradient components fixed-point type as a signed,
scaled numerictype System object. You can apply this property
when you set the Method property to Lucas-Kanade and the
TemporalGradientFilter property to Difference filter [-1
1]. This property applies when you set the GradientDataType
property to Custom. The default value of this property is
numerictype(true,32,20).

ThresholdDataType

Threshold word and fraction lengths

Specify the threshold fixed-point data type as Same word
length as first input, or Custom . This property applies
when you set the Method property to Lucas-Kanade and the
TemporalGradientFilter property to Difference filter [-1
1]. The default value of this property is Same word length as
first input.

CustomThresholdDataType

Threshold word and fraction lengths

Specify the threshold fixed-point type as a signed numerictype
object with a Signedness of Auto. You can apply this property
when you set the Method property to Lucas-Kanade and the
TemporalGradientFilter property to Difference filter [-1
1]. This property applies when you set the ThresholdMode
property to Custom. The default value of this property is
numerictype([],16,12).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Custom. This property
applies when you set the Method property to Lucas-Kanade and
the TemporalGradientFilter property to Difference filter
[-1 1].

CustomOutputDataType

4-527

video.OpticalFlow class

Output word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. The numerictype object
should be unsigned if you set the OutputValue property to
Magnitude-squared and signed if set to Horizontal and
vertical components in complex form. You can apply this
property when you set the Method property to Lucas-Kanade and
the TemporalGradientFilter property to Difference filter
[-1 1]. This property applies when you set the OutputDataType
property to Custom. The default value of this property is
numerictype(false,32,20).

Methods clone Create optical flow object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs returns the number of outputs of
the step method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Estimate direction and speed
of object motion between video
frames

Examples Track cars in a video using optical flow.

hbfr = video.BinaryFileReader('Filename','viptraffic.bin');
hidtc = video.ImageDataTypeConverter;
hof = video.OpticalFlow('ReferenceFrameDelay', 1);
hof.OutputValue = ...

'Horizontal and vertical components in complex form';
hsi = video.ShapeInserter('Shape','Lines', ...

4-528

video.OpticalFlow class

'BorderColor','Custom', ...
'CustomBorderColor', 255);

hvp = video.VideoPlayer('WindowCaption', 'Motion Vector');
while ~isDone(hbfr)

frame = step(hbfr);
im = step(hidtc, frame); % convert to single precision
of = step(hof, im); % compute optical flow
% generate coordinate points
lines = videooptflowlines(of, 20);
if ~isempty(lines)

% draw lines to indicate flow
out = step(hsi, im, lines);
step(hvp, out); % view in video player

end
end
close(hvp);
close(hbfr);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Optical Flow Simulink block reference page. The object properties
correspond to the block parameters.

See Also video.Pyramid

4-529

video.OpticalFlow.clone

Purpose Create optical flow object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an OpticalFlow System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-530

video.OpticalFlow.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, Nto the
step method.

For many System objects, this method is a no-op. Objects that have
internal states will describe in their help what the reset method does
for that object.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-531

video.OpticalFlow.getNumOutputs

Purpose returns the number of outputs of the step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-532

video.OpticalFlow.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax isLocked(h)

Description isLocked(h) returns the locked status, TF of the OpticalFlow System
object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-533

video.OpticalFlow.step

Purpose Estimate direction and speed of object motion between video frames

Syntax VSQ = step(H,I)
V = step(H,I)
[...] = step(H,I1,I2)
[..., IMV] = step(H,I)

Description VSQ = step(H,I) computes the optical flow of input image I from
one video frame to another, and returns VSQ as a matrix of velocity
magnitudes.

V = step(H,I) computes the optical flow of input image I from one
video frame to another, and returns V as a complex matrix of horizontal
and vertical components. This applies when you set the OutputValue
property to Horizontal and vertical components in complex
form.

[...] = step(H,I1,I2) computes the optical flow of the input image
I1, using I2 as a reference frame. This applies when you set the
ReferenceFrameSource property to Input port.

[..., IMV] = step(H,I) outputs the delayed input image, IMV.
The delay is equal to the latency introduced by the computation of
the motion vectors. This property applies when you set the Method
property to Lucas-Kanade, the TemporalGradientFilter property to
Derivative of Gaussian, and the MotionVectorImageOutputPort
property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-534

video.PSNR class

Purpose Compute peak signal-to-noise ratio (PSNR) between images

Description The PSNR object computes the peak signal-to-noise ratio (PSNR)
between images. This ratio is often used as a quality measurement
between an original and a compressed image.

Construction H = video.PSNR returns a System object, H, that computes the peak
signal-to-noise ratio (PSNR) in decibels between two images.

Methods clone Create peak signal to noise ratio
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute peak signal-to-noise
ratio

Examples Compute the PSNR between an original image and its reconstructed
image.

hdct2d = video.DCT2D;
hidct2d = video.IDCT2D;
hpsnr = video.PSNR;
I = double(imread('cameraman.tif'));
J = step(hdct2d, I);
J(abs(J) < 10) = 0;
It = step(hidct2d, J);
psnr = step(hpsnr, I,It)
imshow(I, [0 255]), title('Original image');

4-535

video.PSNR class

figure, imshow(It,[0 255]), title('Reconstructed image');

Algorithm This object implements the algorithm, inputs, and outputs described
on the PSNR block reference page. The object properties correspond
to the block parameters.

See Also video.DCT2D | video.IDCT2D

4-536

video.PSNR.clone

Purpose Create peak signal to noise ratio object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a PSNR System object C, with the same property
values as H. The clone method creates a new unlocked object.

4-537

video.PSNR.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-538

video.PSNR.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-539

video.PSNR.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the PSNR System
object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-540

video.PSNR.step

Purpose Compute peak signal-to-noise ratio

Syntax Y = step(H,X1,X2)

Description Y = step(H,X1,X2) computes the peak signal-to-noise ratio, Y ,
between images X1 and X2 . The two images X1 and X2 must have
the same size.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-541

video.Pyramid class

Purpose Perform Gaussian pyramid decomposition

Description The Pyramid object computes Gaussian pyramid reduction or expansion.
The image reduction step involves lowpass filtering and downsampling
the image pixels. The image expansion step involves upsampling the
image pixels and lowpass filtering.

Construction H = video.Pyramid returns a System object, H, that computes a
Gaussian pyramid reduction or expansion of an image.

H = video.Pyramid(’PropertyName’,PropertyValue,...) returns a
gaussian pyramid System object, H, with each specified property set to
the specified value.

Properties Operation

Reduce or expand the input image

Specify whether to reduce or expand the input image as Reduce
or Expand. If this property is set to Reduce, the object applies
a lowpass filter and then downsamples the input image. If this
property is set to Expand, the object upsamples and then applies
a lowpass filter to the input image. The default value for this
property is Reduce.

PyramidLevel

Level of decomposition

Specify the number of times the object upsamples or downsamples
each dimension of the image by a factor of 2. The default value of
this property is 1.

SeparableFilter

How to specify the coefficients of low pass filter

Indicate how to specify the coefficients of the lowpass filter as
Default or Custom. The default value for this property is Default.

CoefficientA

4-542

video.Pyramid class

Coefficient ’a’ of default separable filter

Specify the coefficients in the default separable filter 1/4-a/2
1/4 a 1/4 1/4-a/2 as a scalar value. This property applies when
you set the SeparableFilter property to Default. The default
value of this property is 0.375.

CustomSeparableFilter

Separable filter coefficients

Specify separable filter coefficients as a vector. This property
applies when you set the SeparableFilter property to Custom.
The default value of this property is [0.0625 0.25 0.375 0.25
0.0625].

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value for this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value for this property is Wrap.

SeparableFilterDataType

CustomSeparableFilter word and fraction lengths

Specify the coefficients fixed-point data type as Same word length
as input, Custom. The default value for this property is Custom.

CustomSeparableFilterDataType

CustomSeparableFilter word and fraction lengths

4-543

video.Pyramid class

Specify the coefficients fixed-point type as a signed numerictype
object with a Signedness of Auto. This property applies when
you set the SeparableFilterDataType property to Custom. The
default value of this property is numerictype([],16,14).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as input, or
Custom. The default value for this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the ProductDataType property to Custom. The default value of
this property is numerictype([],32,10).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Same as input, or Custom. The default value for this
property is Same as product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a signed, scaled
numerictype object with a Signedness of Auto. This
property applies when you set the AccumulatorDataType
property to Custom. The default value of this property is
numerictype([],32,0).

OutputDataType

Output word and fraction lengths

4-544

video.Pyramid class

Specify the output fixed-point data type as Same as input , or
Custom. The default value for this property is Custom.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a signed, scaled
numerictype object with a Signedness of Auto. This property
applies when you set the OutputDataType property to Custom.
The default value of this property is numerictype([],32,10).

Methods clone Create pyramid object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Compute Gaussian pyramid
decomposition of input

Examples Resize image using gaussian pyramid decomposition

hgausspymd = video.Pyramid;
hgausspymd.PyramidLevel = 2;
x = imread('cameraman.tif');
y = step(hgausspymd, x);
figure, imshow(x); title(' Original Image');
figure, imshow(mat2gray(double(y)));
title('Decomposed Image');

4-545

video.Pyramid class

Algorithm This object implements the algorithm, inputs, and outputs described
on the Gaussian Pyramid block reference page. The object properties
correspond to the block parameters.

See Also video.GeometricScaler

4-546

video.Pyramid.clone

Purpose Create pyramid object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a Pyramid System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-547

video.Pyramid.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-548

video.Pyramid.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-549

video.Pyramid.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the Pyramid System
object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-550

video.Pyramid.step

Purpose Compute Gaussian pyramid decomposition of input

Syntax Y = step(H,X)

Description Y = step(H,X) computes Y , the Gaussian pyramid decomposition of
input X.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-551

video.ShapeInserter class

Purpose Draw rectangles, lines, polygons, or circles on images

Description The ShapeInserter object draws rectangles, lines, polygons, or circles
on images.

Construction H = video.ShapeInserter returns a System object, H, that draws
multiple rectangles, lines, polygons, or circles on images by overwriting
pixel values.

H = video.ShapeInserter(’PropertyName’,PropertyValue,...)
returns a shape inserter System object, H, with each specified property
set to the specified value.

Properties Shape

Type of shape(s) to draw

Specify the type of shape(s) to draw as Rectangles, Lines,
Polygons, or Circles. The default value of this property is
Rectangles.

Fill

Enable filling shape

Set this property to true to fill the shape with an intensity value
or a color. This property applies when the Shape property is not
set to Lines. The default value of this property is false.

BorderColorSource

Source of border color

Specify how the shape’s border color is provided as Input port or
Property. This property applies when you set theShape property
to Lines or when the Shape property is not set to Lines and you
set the Fill property to false. When BorderColorSource is
set to Input port, a border color vector must be provided as an
input to the System object’s step method. The default value of
this property is Property.

4-552

video.ShapeInserter class

BorderColor

Border color of shape

Specify the appearance of the shape’s border as Black, White, or
Custom. If this property is set to Custom, the CustomBorderColor
property is used to specify the value. This property applies when
the BorderColorSource property is enabled and set to Property.
The default value of this property is Black.

CustomBorderColor

Intensity or color value for shape’s border

Specify an intensity or color value for the shape’s border. If the
input is an intensity image, this property can be set to a scalar
intensity value for one shape or R-element vector where R is the
number of shapes. If the input is a color image, this property can
be set to one of:

A P-element vector where P is the number of color planes.
A P-by-R matrix where P is the number of color planes and R is
the number of shapes.

This property applies when you set the BorderColor property to
Custom. This property is tunable when the Antialiasing property
is false. The default value of this property is [200 255 100].

FillColorSource

Source of fill color

Specify how the shape’s fill color is provided as Input port or
Property. This property applies when you set the Fill property
to true, and you do not set the Shape property to Lines. When
FillColorSource is set to Input port, a fill color vector must be
provided as an input to the System object’s step method. The
default value of this property is Property.

FillColor

Fill color of shape

4-553

video.ShapeInserter class

Specify the intensity of the shading inside the shape as
Black, White, or Custom. If this property is set to Custom, the
CustomFillColor property is used to specify the value. This
property applies when you enable the FillColorSource property
and set it to Property. The default value of this property is Black.

CustomFillColor

Intensity or color value for shape’s interior

Specify an intensity or color value for the shape’s interior. If the
input is an intensity image, this property can be set to a scalar
intensity value for one shape or an R-element vector where R is
the number of shapes. If the input is a color image, this property
can be set to one of:

A P-element vector where P is the number of color planes.
A P-by-R matrix where P is the number of color planes and R is
the number of shapes.

This property applies when you set the FillColor property to
Custom. This property is tunable when the Antialiasing property
is false. The default value of this property is [200 255 100].

Opacity

Opacity of the shading inside shapes

Specify the opacity of the shading inside the shape by a scalar
value between 0 and 1, where 0 is transparent and 1 is opaque.
This property applies when you set the Fill property to true.
This property is tunable. The default value of this property is 0.6.

ROIInputPort

Enable defining area for drawing shapes via input

Set this property to true to define the area in which to draw
the shapes via an input to the step method. The input is a
four-element vector, [r c height width], where r and c are the row
and column coordinates of the upper-left corner of the area, and
height and width represent the height (in rows) and width (in
columns) of the area. If the property is false then the entire

4-554

video.ShapeInserter class

image will be used as the area in which to draw. The default value
of this property is false.

Antialiasing

Enable performing smoothing algorithm on shapes

Set this property to true to perform a smoothing algorithm on
the line, polygon, or circle. This property applies when you set
the Shape property to Lines, Polygons, or Circles. The default
value of this property is false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. This property applies when
you set the Fill property to true and/or the Antialiasing
property to true. The default value of this property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap , or Saturate. This property
applies when you set the Fill property to true and/or the
Antialiasing property to true. The default value of this property
is Wrap.

OpacityDataType

Opacity word length

Specify the opacity fixed-point data type as Same word length
as input, or Custom. This property applies when you set the Fill
property to true. The default value of this property is Custom.

CustomOpacityDataType

Opacity word length

4-555

video.ShapeInserter class

Specify the opacity fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when
you set the Fill property to true and the OpacityDataType
property to Custom. The default value of this property is
numerictype([],16).

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as first
input, or Custom. This property applies when you set the Fill
property to true and/or the Antialiasing property to true. The
default value of this property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the Fill property to true and/or the Antialiasing property
to true, and the ProductDataType property to Custom. The
default value of this property is numerictype(true,32,14).

AccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as
product, Same as first input, or Custom. This property applies
when you set the Fill property to true and/or the Antialiasing
property to true. The default value of this property is Same as
product.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the Fill property to true and/or the Antialiasing property

4-556

video.ShapeInserter class

to true, and the AccumulatorDataType property to Custom. The
default value of this property is numerictype([],32,14)

Methods clone Create shape inserter object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Draw specified shape on image

Examples Draw a rectangle on an input image.

hshapeins = video.ShapeInserter;
I = im2double(imread('cameraman.tif'));
Pts = [10 10 30 30];
y = step(hshapeins, I, Pts);
imshow(y);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Draw Shapes block reference page. The object properties correspond
to the block parameters, except for:

• The Image signal block parameter allows you to specify whether
the block accepts the color video signal as One multidimensional
signal or Separate color signals. The object does not have a
property that corresponds to the Image signal block parameter.
You must always provide the input image to the step method of the
object as a single multidimensional signal.

4-557

video.ShapeInserter class

See Also video.MarkerInserter

4-558

video.ShapeInserter.clone

Purpose Create shape inserter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a ShapeInserter System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-559

video.ShapeInserter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-560

video.ShapeInserter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-561

video.ShapeInserter.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the ShapeInserter
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-562

video.ShapeInserter.step

Purpose Draw specified shape on image

Syntax Y = step(H,I,PTS)
Y = step(H,I,PTS,ROI)
Y = step(H,I,PTS,...,CLR)

Description Y = step(H,I,PTS) draws the specified shape on image I at the
coordinates specified by PTS .

Y = step(H,I,PTS,ROI) draws the specified shape only in a
rectangular area defined by ROI when you set the ROIInputPort
property to true.

Y = step(H,I,PTS,...,CLR) uses the border or fill color CLR
to draw the border or fill the specified shape, when you set the
BorderColorSource property to true or the FillColorSource property
to Input port.

The shapes are embedded on the output image Y. When you set the
Shape property to Rectangles, PTS must be a four-by-N matrix where
each column is of the form [r c height width]' and specifies a
different rectangle. The argument variables r and c are the zero-based
row and column coordinates of the upper-left corner of the rectangle,
and height and width are the height, in pixels, and width, in pixels,
of the rectangle. Here, height and width must be greater than 0.
When you set the Shape property to Lines, PTS must be a 2L-by-N
matrix where each column specifies a different polyline. Each column
must be of the form [r1,c1,r2,c2...rL,cL]', which specifies the
points to be connected in consecutive order. When you set the Shape
property to Polygons, PTS must be a 2L-by-N matrix where each
column specifies a different polygon. Each column must be of the form
[r1,c1,r2,c2...rL,cL]', which specifies the points to be connected in
consecutive order. In this case [r1,c1] is also connected to [rL,cL].
When you set the Shape property to Circles, PTS must be a three-by-N
matrix where each column is of the form [r c radius]' and specifies a
different circle.

4-563

video.ShapeInserter.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-564

video.StandardDeviation class

Purpose Find standard deviation of input or sequence of inputs

Description The StandardDeviation object finds standard deviation of input or
sequence of inputs.

Construction H = video.StandardDeviation returns a System object, H, that
computes the standard deviation of the entire input.

H =
video.StandardDeviation(’PropertyName’,PropertyValue,...)
returns a standard deviation System object, H, with each specified
property set to the specified value.

Properties RunningStandardDeviation

Enable calculation over time

Set this property to true to enable the calculation of standard
deviation over time. The default value of this property is false.

ResetInputPort

Reset in running standard deviation mode

Set this property to true to enable resetting the running
standard deviation. When the property is set to true, a reset
input must be specified to the step method to reset the running
standard deviation. This property applies when you set the
RunningStandardDeviation property to true. The default value
of this property is false.

ResetCondition

Reset condition for running standard deviation mode

Specify the event to reset the running standard deviation to
Rising edge, Falling edge, Either edge, or Non-zero. This
property applies when you set the ResetInputPort property to
true. The default value for this property is Non-zero.

Dimension

4-565

video.StandardDeviation class

Numerical dimension to operate along

Specify how the standard deviation calculation is performed over
the data as All, Row, Column, or Custom. The default value for
this property is All.

CustomDimension

Numerical dimension to operate along

Specify the dimension (one-based value) of the input signal,
over which the standard deviation is computed. The value of
this property cannot exceed the number of dimensions in the
input signal. This property applies when you set the Dimension
property to Custom. The default value of this property is 1.

ROIProcessing

Enable region of interest processing

Set this property to true to enable calculating the standard
deviation within a particular region of each image. This property
applies when you set the Dimension property to All and the
RunningStandardDeviation property to false. The default value
of this property is false.

ROIForm

Type of region of interest

Specify the type of region of interest to Rectangles, Lines, Label
matrix, or Binary mask. This property applies when you set
the ROIProcessing property to true. The default value for this
property is Rectangles.

ROIPortion

Calculate over entire ROI or just perimeter

Specify the region over which to calculate the standard deviation
to Entire ROI, or ROI perimeter. This property applies when
you set the ROIForm property to Rectangles. The default value
for this property is Entire ROI.

4-566

video.StandardDeviation class

ROIStatistics

Statistics for each ROI, or one for all ROIs

Specify what statistics to calculate as Individual statistics
for each ROI, or Single statistic for all ROIs. This
property does not apply when you set the ROIForm property to
Binary mask. The default value of this property is Individual
statistics for each ROI

ValidityOutputPort

Produces an output with ROI validity status

Set this property to true to return the validity of the specified ROI
being completely inside of the image. This applies when you set
the ROIForm property to Lines, or Rectangles. Set this property
to true to return the validity of the specified label numbers when
you set the ROIForm property to Label Matrix. This property
applies when you set the ROIForm property to anything except
Binary mask. The default value of this property is false.

Methods clone Create standard deviation object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

reset Reset running standard deviation
state

step Compute standard deviation of
input

4-567

video.StandardDeviation class

Examples Determine the standard deviation in a grayscale image.

img = im2single(rgb2gray(imread('peppers.png')));
hstd2d = video.StandardDeviation;
std = step(hstd2d,img);

Algorithm This object implements the algorithm, inputs, and outputs described
on the Standard Deviation block reference page. The object properties
correspond to the block parameters.

See Also signalblks.StandardDeviation

4-568

video.StandardDeviation.clone

Purpose Create standard deviation object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a StandardDeviation System object C, with the
same property values as H. The clone method creates a new unlocked
object with uninitialized states.

4-569

video.StandardDeviation.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-570

video.StandardDeviation.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-571

video.StandardDeviation.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
StandardDeviation System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-572

video.StandardDeviation.reset

Purpose Reset running standard deviation state

Syntax reset(H)

Description reset(H) resets the internal states of System object H,
used for computing running standard deviation when the
RunningStandardDeviation property is true.

4-573

video.StandardDeviation.step

Purpose Compute standard deviation of input

Syntax Y = step(H,X)
Y = step(H,X,R)
Y = step(H,X,ROI)
Y = step(H,X,LABEL,LABELNUMBERS)
[Y, FLAG] = step(H,X,ROI)
[Y, FLAG] = step(H,X,LABEL,LABELNUMBERS)

Description Y = step(H,X) computes the standard deviation of input X . It
computes the standard deviation of the input elements over time, Y ,
when you set the RunningStandardDeviation property to true.

Y = step(H,X,R) computes the standard deviation of the input
elements over time, Y, and optionally resets its state based on the
value of reset signal R , the ResetInputPort property and the
ResetCondition property. This option applies when you set the
RunningStandardDeviation property to true and the ResetInputPort
property to true.

Y = step(H,X,ROI) uses additional input ROI as the region of interest
when you set the ROIProcessing property to true and the ROIForm
property to Lines, Rectangles or Binary mask.

Y = step(H,X,LABEL,LABELNUMBERS) computes the standard deviation
of input image X for region labels contained in vector LABELNUMBERS
, with matrix LABEL marking pixels of different regions. This option
applies when you set the ROIProcessing property to true and the
ROIForm property to Label matrix.

[Y, FLAG] = step(H,X,ROI) also returns FLAG which indicates
whether the given region of interest is within the image bounds when
you set the ValidityOutputPort property to true.

[Y, FLAG] = step(H,X,LABEL,LABELNUMBERS) also returns FLAG
which indicates whether the input label numbers are valid when you
set the ValidityOutputPort property to true.

4-574

video.StandardDeviation.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-575

video.TemplateMatcher class

Purpose Perform template matching by shifting template over image

Description The TemplateMatcher object performs template matching by shifting
template over image.

Construction H = video.TemplateMatcher returns a template matcher System
object, H, that performs template matching by shifting a template in
single-pixel increments throughout the interior of an image.

H = video.TemplateMatcher(’PropertyName’,PropertyValue,...)
returns a template matcher object, H, with each specified property set to
the specified value.

Properties Metric

Metric used for template matching

Specify the metric to use for template matching as Sum of
absolute differences, Sum of squared differences, or
Maximum absolute difference. The default value for this
property is Sum of absolute differences.

OutputValue

Type of output

Specify the output that the object should return as Metric
matrix, or Best match location. The default value of this
property is Best match location.

SearchMethod

How to search for minimum difference between two inputs

Specify how the object searches for the minimum difference
between the two input matrices as Exhaustive or Three-step.
If you set this property to Exhaustive, the object searches for
the minimum difference pixel-by-pixel. If you set this property
to Three-step, the object searches for the minimum difference
using a steadily decreasing step size. The Three-step method
is computationally less expensive than the Exhaustive method,

4-576

video.TemplateMatcher class

though it might not find the optimal solution. This property
applies when you set the OutputValue property to Best match
location. The default value for this property is Exhaustive.

BestMatchNeighborhoodOutputPort

Enable metric values output

Set this property to true to return two outputs, NMETRIC and
NVALID. The output NMETRIC denotes an Nby-N matrix of metric
values around the best match, where N is the value of the
NeighborhoodSize property. The output NVALID is a boolean
indicating whether the object went beyond the metric matrix to
construct output NMETRIC. This property applies when you set
the OutputValue property to Best match location. The default
value of this property is false.

NeighborhoodSize

Size of the metric values

Specify the size, N, of the Nby-N matrix of metric values as
an odd number. For example, if the matrix size is 3-by-3
set this property to 3. This property applies when you set
the OutputValue property to Best match location and the
BestMatchNeighborhoodOutputPort property to true. The
default value of this property is 3.

ROIInputPort

Enable ROI specification via input

Set this property to true to define the Region of Interest (ROI)
over which to perform the template matching. If this property
is set to true, the ROI is specified using an input to the step
method. Otherwise the entire input image is used. The default
value of this property is false.

ROIValidityOutputPort

Enable output of a flag indicating if any part of ROI is outside
input image

4-577

video.TemplateMatcher class

When this boolean property is set to true, the object will return
an ROI flag indicating, when false, that a part of the ROI is
outside the input image. This property applies when you set the
ROIInputPort property to true. The default value is false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value for this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

Specify the overflow action as Wrap or Saturate. The default
value for this property is Wrap.

ProductDataType

Product word and fraction lengths

Specify the product fixed-point data type as Same as first input,
Custom. This property applies when you set the Metric property
to Sum of squared differences. The default value for this
property is Custom.

CustomProductDataType

Product word and fraction lengths

Specify the product fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the Metric property to Sum of squared differences, and
the ProductDataType property to Custom. The default value of
this property is numerictype([],32,0).

AccumulatorDataType

4-578

video.TemplateMatcher class

Accumulator word and fraction lengths

Specify the accumulator fixed-point data type as Same as first
input, or Custom. The default value for this property is Custom.

CustomAccumulatorDataType

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled numerictype
object with a Signedness of Auto. This property applies when you
set the AccumulatorDataType property to Custom. The default
value of this property is numerictype([],32,0).

OutputDataType

Output word and fraction lengths

Specify the output fixed-point data type as Same as first input,
Custom. This property applies when you set the OutputValue
property to Metric matrix. This property applies when you
set the OutputValue property to Best match location, and
the BestMatchNeighborhoodOutputPort property to true. The
default value for this property is Same as first input.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object
with a Signedness of Auto. This property applies when you set
the OutputDataType property to Custom. The default value of this
property is numerictype([],32,0).

Methods clone Create template matcher object
with same property values

getNumInputs Number of expected inputs to
step method

4-579

video.TemplateMatcher class

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Finds the best template match
within an image

Examples Find the location of a particular chip on an image of an electronic board

htm=video.TemplateMatcher;
hmi = video.MarkerInserter('Size', 10, ...
'Fill', true, 'FillColor', 'White', 'Opacity', 1);
I1=rgb2gray(imread('board.tif'));
I=I1(1:200,1:200); %Input image
T=I(20:75,90:135); %Use a second similar chip as template
Loc=step(htm,I,T); %Find the location of the first chip
% on the board
Im=step(hmi, I, Loc); %Mark the location on the image
%using a filled white circle
imshow(Im)

Algorithm This object implements the algorithm, inputs, and outputs described
on the Template Matching block reference page. The object properties
correspond to the block parameters.

See Also video.OpticalFlow | video.MarkerInserter

4-580

video.TemplateMatcher.clone

Purpose Create template matcher object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a TemplateMatcher System object C, with the
same property values as H. The clone method creates a new unlocked
object.

4-581

video.TemplateMatcher.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-582

video.TemplateMatcher.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-583

video.TemplateMatcher.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
TemplateMatcher System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-584

video.TemplateMatcher.step

Purpose Finds the best template match within an image

Syntax LOC = step(H,I,T)
METRIC = step(H,I,T)
LOC = step(H,I,T,ROI)
[LOC,ROIVALID] = step(H,I,T,ROI)
[LOC,NVALS,NVALID] = step(H,I,T)
[LOC,NVALS,NVALID,ROIVALID] = step(H,I,T,ROI)

Description LOC = step(H,I,T) computes the zero-based location, LOC , of the best
template match relative to the top left corner of the image between the
image matrix, I , and the template matrix, T . The object computes the
location by shifting the template in single-pixel increments throughout
the interior of the image.

METRIC = step(H,I,T) computes the match metric values for image,
I , with T as the template, when you set the OutputValue property
to Metric matrix.

LOC = step(H,I,T,ROI) computes the zero-based location of the best
template match, LOC , in the specified region of interest, ROI , when
you set the OutputValue property to Best match location and the
ROIInputPort property to true. ROI must be a four element vector,
[row column height width], where the first two elements represent the
zero-based row and column coordinates of the upper-left corner of the
ROI , and the last two elements define the height and width of the ROI.

[LOC,ROIVALID] = step(H,I,T,ROI) computes the zero-based location
of the best template match, LOC , in the specified region of interest, ROI ,
and also returns a boolean flag in ROIVALID indicating if the specified
ROI is outside the bounds of the input image I . This option applies
when you set the OutputValue property to Best match location,
the ROIInputPort property to true and the ROIValidityOutputPort
to true.

[LOC,NVALS,NVALID] = step(H,I,T) returns the best template match,
LOC, the metric values around the best match, NVALS, and a boolean
flag, NVALID. NVALID indicates, when false, that the neighborhood
around the best match extended outside the borders of the metric

4-585

video.TemplateMatcher.step

value matrix when constructing NVALS. This syntax is possible when
you set the OutputValue property to Best match location and the
BestMatchNeighborhoodOutputPort property to true.

[LOC,NVALS,NVALID,ROIVALID] = step(H,I,T,ROI) returns the best
template match, LOC , the metric values around the best match, NVALS
, and two boolean flags, NVALID and ROIVALID . NVALID indicates,
when false, that the neighborhood around the best match extended
outside the borders of the metric value matrix when constructing
NVALS . ROIVALID indicates, when false, that the specified ROI is
outside the bounds of the input image I . This syntax is possible
when you set the OutputValue property to Best match location,
the BestMatchNeighborhoodOutputPort property to true, the
ROIInputPort property to true, and the ROIValidityOutputPort
property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-586

video.TextInserter class

Purpose Draw text on image or video stream

Description The TextInserter object draws text on image or video stream.

Construction H = video.TextInserter returns a System object, H, that draws
formatted text onto an image or video stream.

H = video.TextInserter(’PropertyName’,PropertyValue,...)
returns a text inserter object, H, with each specified property set to
the specified value.

H =
video.TextInserter(TEXT,’PropertyName’,PropertyValue,...)
returns a text inserter object, H, with the Text property set to TEXT and
other specified properties set to the specified values.

Properties Text

Text string to draw on image or video stream

Specify the text string to be drawn on image or video stream as
a single text string or a cell array of strings. The string(s) can
include ANSI C printf-style format specifications, such as %d, %f,
or %s.

ColorSource

Source of intensity or color of text

Specify the intensity or color value of the text as Property or
Input port. The default value for this property is Property.

Color

Intensity or color of text

Specify the intensity or color of the text as a scalar integer value
or a 3-element vector respectively. Alternatively, if the Text
property is a cell array of N number of strings, specify a 1-by-N
vector of intensity values or 3-by-N matrix of color values that
correspond to each string. The default value of this property is

4-587

video.TextInserter class

[0 0 0]. This property applies when you set the ColorSource
property to Property. This property is tunable.

LocationSource

Source of text location

Specify the location of the text as Property or Input port. The
default value for this property is Property.

Location

Top-left corner of text bounding box

Specify the top-left corner of the text bounding box as a 2-element
vector of integers, [row column]. The default value of this property
is [0 0]. This property applies when you set the LocationSource
property to Property. This property is tunable.

OpacitySource

Source of opacity of text

Specify the opacity of the text as Property or Input port. The
default value of this property is Property.

Opacity

Opacity of text

Specify the opacity of the text as numeric scalar between 0 and 1.
This property applies when you set the OpacitySource property
to Property. The default value of this property is 1. This property
is tunable.

TransposedInput

Specifies if input image data order is row major

Set this property to true to indicate that the input image data
order is row major. The default value of this property is false.

Font

Font face of text

4-588

video.TextInserter class

Specify the font of the text as the available fonts installed on the
system.

FontSize

Font size in points

Specify the font size as any positive integer value. The default
value of this property is 12.

Antialiasing

Perform smoothing algorithm on text edges

Set this property to true to smooth the edges of the text. The
default value of this property is true.

Methods clone Create text inserter object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

step Draws the specified text onto
input image

Examples Draw a text string on a static image.

H = video.TextInserter('Peppers are good for you!');
H.Color = 1;
H.FontSize = 24;
H.Location = [315 100];
img1 = im2double(rgb2gray(imread('peppers.png')));
txtimg1 = step(H, img1);

4-589

video.TextInserter class

imshow(txtimg1);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Insert Text block reference page. The object properties correspond
to the block parameters, except for:

• The Image signal block parameter allows you to specify whether
the block accepts the color video signal as One multidimensional
signal or Separate color signals. The object does not have a
property that corresponds to the Image signal block parameter.
You must always provide the input image to the step method of the
object as a single multidimensional signal.

See Also video.AlphaBlender | video.MarkerInserter |
video.ShapeInserter

4-590

video.TextInserter.clone

Purpose Create text inserter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a TextInserter System object C, with the same
property values as H. The clone method creates a new unlocked object.

4-591

video.TextInserter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-592

video.TextInserter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N from the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-593

video.TextInserter.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the TextInserter
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-594

video.TextInserter.step

Purpose Draws the specified text onto input image

Syntax Y = step(H,IMG)
Y = step(H,IMG,CELLIDX)
Y = step(H,IMG,VARS)
Y = step(H,IMG,COLOR)
Y = step(H,IMG,LOC)
Y = step(H,IMG,OPAC)
Y = step(H,IMG,CELLIDX,VARS,COLOR,LOC,OPAC)

Description Y = step(H,IMG) draws the specified text onto input image IMG and
returns the modified image Y . The image IMG can either be an M-by-N
matrix of intensity values or an M-by-N-by-P array color video signal
where P is the number of color planes.

Y = step(H,IMG,CELLIDX) draws the text string selection given in
zero-based index value, CELLIDX , when the Text property is a cell array
of strings. A CELLIDX value less than 0 or more than the length of cell
array minus one, will cause no text to be drawn.

Y = step(H,IMG,VARS) uses the data in VARS for variable substitution,
when the Text property contains ANSI C printf-style format
specifications (%d, %.2f, etc.). VARS is a scalar or a vector having length
equal to the number of format specifiers in each element in the specified
text string.

Y = step(H,IMG,COLOR) uses the given scalar or 3-element vector
COLOR for the text intensity or color respectively, when you set the
ColorSource property to Input port.

Y = step(H,IMG,LOC) places the text at the location given by
two-element vector LOC , when you set the LocationSource property
to Input port.

Y = step(H,IMG,OPAC) uses OPAC for the text opacity when you set the
OpacitySource property to set to Input port.

Y = step(H,IMG,CELLIDX,VARS,COLOR,LOC,OPAC) draws the specified
text onto image IMGusing text string selection index CELLIDX , text
variable substitution data VARS , intensity or color value COLORat

4-595

video.TextInserter.step

location LOC with opacity OPAC. You can use any combination or all
possible inputs. Properties must be set appropriately.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-596

video.Variance class

Purpose Find variance values in an input or sequence of inputs

Description The Variance object finds variance values in an input or sequence of
inputs.

Construction H = video.Variance returns a System object, H, that computes the
variance of an input or a sequence of inputs.

H = video.Variance(’PropertyName’,PropertyValue,...) returns
a variance System object, H, with each specified property set to the
specified value.

Properties RunningVariance

Enable calculation over time

Set this property to true to enable the calculation of the variance
over time. The default value of this property is false.

ResetInputPort

Enable resetting via an input in running variance mode

Set this property to true to enable resetting the running variance.
When the property is set to true, a reset input must be specified
to the step method to reset the running variance. This property
applies when you set the RunningVariance property to true. The
default value of this property is false.

ResetCondition

Reset condition for running variance mode

Specify the event to reset the running variance as Rising edge,
Falling edge, Either edge, or Non-zero. This property applies
when you set the ResetInputPort property to true. The default
value for this property is Non-zero.

CustomDimension

Numerical dimension to operate along

4-597

video.Variance class

Specify the dimension (one-based value) of the input signal,
over which the variance is computed. The value of this property
cannot exceed the number of dimensions in the input signal. This
property applies when you set the Dimension property to Custom.
The default value of this property is 1.

Dimension

Numerical dimension to operate along

Specify how the variance calculation is performed over the data as
All, Row, Column, or Custom. This property applies only when you
set the RunningVariance property to false. The default value
for this property is All.

ROIForm

Type of region of interest

Specify the type of region of interest as Rectangles, Lines, Label
matrix, or Binary mask. This property applies when you set the
ROIProcessing property to true. Full ROI processing support
requires a Video and Image Processing Blockset license. If you
only have the Signal Processing Blockset license, the ROIForm
property value options are limited to Rectangles. The default
value for this property is Rectangles.

ROIPortion

Calculate over entire ROI or just perimeter

Specify the region over which to calculate the variance as Entire
ROI, or ROI perimeter. This property applies when you set the
ROIForm property to Rectangles. The default value for this
property is Entire ROI.

ROIProcessing

Enable region of interest processing

Set this property to true to enable calculating the variance within
a particular region of each image. This property applies when
you set the Dimension property to All and the RunningVariance

4-598

video.Variance class

property to false. Full ROI processing support requires a Video
and Image Processing Blockset license. If you only have the
Signal Processing Blockset license, the ROIForm property value
options are limited to Rectangles. The default value of this
property is false.

ROIStatistics

Statistics for each ROI, or one for all ROIs

Specify what statistics to calculate as Individual statistics
for each ROI , or Single statistic for all ROIs. This
property does not apply when you set the ROIForm property to
Binary mask. The default value of this property isIndividual
statistics for each ROI.

ValidityOutputPort

Produces an output with ROI validity status

Set this property to true to return the validity of the specified ROI
being completely inside of the image. Set this property to true to
return the validity of the specified label numbers when you set
the ROIForm property to Label Matrix. This property applies
when you set the ROIForm property to Lines or Rectangles. The
default value of this property is false.

Fixed-Point Properties

RoundingMethod

Rounding method for fixed-point operations

Specify the rounding method as Ceiling, Convergent, Floor,
Nearest, Round, Simplest, or Zero. The default value for this
property is Floor.

OverflowAction

Overflow action for fixed-point operations

4-599

video.Variance class

Specify the overflow action as Wrap or Saturate. The default
value for this property is Wrap.

InputSquaredProductDataType

Input squared product and fraction lengths

Specify the input-squared product fixed-point data type as Same
as input or Custom. The default value for this property is Same
as input.

CustomInputSquaredProductDataType

Input squared product word and fraction lengths

Specify the input-squared product fixed-point type as a scaled
numerictype object. This property applies when you set the
InputSquaredProductDataType property to Custom. The default
value of this property is numerictype(true,32,15).

InputSumSquaredProductDataType

Input-sum-squared product and fraction lengths

Specify the input-sum-squared product fixed-point data type as
Same as input-squared product or Custom. The default value
for this property is Same as input-squared product.

CustomInputSumSquaredProductDataType

Input sum-squared product and fraction lengths

Specify the input-sum-squared product fixed-point type as a
scaled numerictype object. This property applies when you set
the InputSumSquaredProductDataType property to Custom. The
default value of this property is numerictype(true,32,23).

AccumulatorDataType

Data type of the accumulator

Specify the accumulator fixed-point data type as Same as input,
or Custom. The default value for this property is Same as input.

CustomAccumulatorDataType

4-600

video.Variance class

Accumulator word and fraction lengths

Specify the accumulator fixed-point type as a scaled
numerictype object. This property applies when you set the
AccumulatorDataType property to Custom. The default value of
this property is numerictype(true,32,30).

OutputDataType

Data type of output

Specify the output fixed-point data type as Same as accumulator,
Same as input, or Custom. The default value of this property is
Same as accumulator.

CustomOutputDataType

Output word and fraction lengths

Specify the output fixed-point type as a scaled numerictype object.

This property applies when you set the OutputDataType
property to Custom. The default value of this property is
numerictype(true,32,30).

Methods clone Create variance object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status (logical) for input
attributes and non-tunable
properties

reset Reset the internal states of the
variance object

step Compute variance of input

4-601

video.Variance class

Examples Determine the variance in a grayscale image.

img = im2single(rgb2gray(imread('peppers.png')));
hvar2d = video.Variance;
var2d = step(hvar2d,img);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Variance block reference page. The object properties correspond to
the block parameters. except for:

• Treat sample-based row input as a column block parameter is
not supported by the Variance object.

• Reset port block parameter corresponds to both the ResetCondition
and the ResetInputPort object properties.

See Also signalblks.Variance

4-602

video.Variance.clone

Purpose Create variance object with same property values

Syntax C = clone(H)

Description C = clone(H) creates a Variance System object C, with the same
property values as H. The clone method creates a new unlocked object
with uninitialized states.

4-603

video.Variance.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method.

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-604

video.Variance.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs for the step
method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-605

video.Variance.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the Variance
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-606

video.Variance.reset

Purpose Reset the internal states of the variance object

Syntax reset(H)

Description reset(H) resets the internal states of System object H to their initial
values.

4-607

video.Variance.step

Purpose Compute variance of input

Syntax Y = step(H,X)
Y = step(H,X,R)
VAR2D = step(H,X,ROI)
VAR2D = step(H,X,LABEL,LABELNUMBERS)
[VAR2D, FLAG] = step(H,X,ROI)
[VAR2D, FLAG] = step(H,X,LABEL,LABELNUMBERS)

Description Y = step(H,X) computes the variance of input X . Computes the
variance of the input elements over time, Y , when you set the
RunningVariance property to true.

Y = step(H,X,R) computes the variance of the input elements over
time, Y , and optionally resets its state based on the value of the reset
signal R , the ResetInputPort property and the ResetCondition
property. This option applies when you set the RunningVariance
property to true and the ResetInputPort to true.

VAR2D = step(H,X,ROI) computes the variance of input image X
within the given region of interest ROI when you set the ROIProcessing
property to true and the ROIForm property to Lines, Rectangles or
Binary mask.

VAR2D = step(H,X,LABEL,LABELNUMBERS) computes the variance of
input image X for region labels contained in vector LABELNUMBERS , with
matrix LABEL marking pixels of different regions. This option applies
when you set the ROIProcessing property to true and the ROIForm
property to Label matrix.

[VAR2D, FLAG] = step(H,X,ROI) also returns FLAG, which indicates
whether the given region of interest is within the image bounds
when you set both the ROIProcessing and the ValidityOutputPort
properties to true and the ROIForm property to Lines, Rectangles
or Binary mask.

[VAR2D, FLAG] = step(H,X,LABEL,LABELNUMBERS) also returns FLAG,
which indicates whether the input label numbers are valid when you set

4-608

video.Variance.step

both the ROIProcessing and ValidityOutputPort properties to true
and the ROIForm property to Label matrix.

Note The object performs an initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a non-tunable property or an input
specification, the System object issues a warning and re-initializes.

4-609

video.VideoPlayer class

Purpose Play video or display image sequences

Description The VideoPlayer object plays video or displays image sequences.

Construction H = video.VideoPlayer returns a video player object, H, to view video
or image sequences.

H = video.VideoPlayer('PropertyName',PropertyValue, ...)
returns a video player object, H, with each property set to the specified
value.

Properties WindowCaption

Caption display on video player window

Specify the caption to display on the video player window as a
string. The property defaults to Video.

WindowPosition

Size and position of the video player window in pixels

Specify the size and position of the video player window in pixels
as a four-element vector of the form: [left bottom width
height]. The default value of this property is dependent on
the screen resolution and positions the window in the center of
the screen with a width and height of 410 and 300 pixels. This
property is tunable.

Methods clone Create video player with same
property values

close Release video resources

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

4-610

video.VideoPlayer class

isLocked Locked status (logical) for input
attributes and non-tunable
properties

reset Reset displayed frame number to
zero

step Play video or image sequence

Examples Play back a video on the screen:

hmfr = video.MultimediaFileReader;
hvp = video.VideoPlayer;
while ~isDone(hmfr)
frame = step(hmfr);
step(hvp, frame);
end
close(hmfr);
close(hvp);

Algorithm This object implements the algorithm, inputs, and outputs described on
the Video Viewer block reference page. The object properties correspond
to the block parameters, except for:

• The WindowCaption property can only be set directly in the video
player object.

• The WindowPosition property can only be set directly in the video
player object.

• The Image Signal block parameter allows you to specify whether
the block accepts the color video signal as One Multi-Dimensional
Signal or Separate Color Signals. The object does not have a
property that corresponds to the Image Signal block parameter.
You must always provide the input image to the step method of the
object as a single multidimensional signal.

See Also video.DeployableVideoPlayer | video.MultimediaFileWriter

4-611

video.VideoPlayer.clone

Purpose Create video player with same property values

Syntax C = clone(H)

Description C = clone(H) creates an instance of the current video player object
with the same property values. The clone method creates a new
unlocked object with uninitialized states.

4-612

video.VideoPlayer.close

Purpose Release video resources

Syntax close(H)

Description close(H) releases the system resources used by the video player.

4-613

video.VideoPlayer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns the number of expected inputs, N to
the step method

The getNumInputs method returns a positive integer representing the
number of expected inputs to the step method. This value will change
if any properties that turn inputs on or off are changed. The step
method must be called with a number of input arguments equal to the
result of getNumInputs(H).

4-614

video.VideoPlayer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of arguments from the
step method.

The getNumOutputs method returns a positive integer representing the
number of outputs from the step method. This value will change if any
properties that turn inputs on or off are changed.

4-615

video.VideoPlayer.isLocked

Purpose Locked status (logical) for input attributes and non-tunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the VideoPlayer
System object.

The isLocked method returns a logical value to indicate whether
input attributes and non-tunable properties are locked for the object.
The object performs an internal initialization the first time the step
method is executed. This initialization locks non-tunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. Once this occurs, the isLocked method returns a
true value.

4-616

video.VideoPlayer.reset

Purpose Reset displayed frame number to zero

Syntax reset(H)

Description reset(H) resets the displayed frame number of the video player to zero.

4-617

video.VideoPlayer.step

Purpose Play video or image sequence

Syntax step(H,I)

Description step(H,I) sends one frame of a multidimensional video I, or image
sequence to the video player.

4-618

viplib

Purpose Open top-level Video and Image Processing Blockset library

Syntax viplib

Description viplib opens the top-level Video and Image Processing Blockset block
library model.

Examples View and gain access to the Video and Image Processing Blockset blocks:

viplib

Alternatives To view and gain access to the Video and Image Processing Blockset
blocks using the Simulink library browser:

• Type simulink at the MATLAB command line, and then expand the
Video and Image Processing Blockset node in the library browser.

• Click the Simulink icon from the MATLAB desktop or from a
model.

4-619

viplib

4-620

5

Function Reference

Video and Image Processing
Functions (p. 5-2)

Video & Image Processing Functions

5 Function Reference

Video and Image Processing Functions

isfilterseparable Determine whether filter coefficients
are separable

mplay View video from MATLAB
workspace, multimedia file, or
Simulink model

viplib Open top-level Video and Image
Processing Blockset library

5-2

	toc
	Block Reference
	Analysis & Enhancement
	Conversions
	Filtering
	Geometric Transformations
	Morphological Operations
	Sinks
	Sources
	Statistics
	Text & Graphics
	Transforms
	Utilities

	Blocks — Alphabetical List
	Toolbar
	Playback Toolbar
	Setting Viewer Configuration
	Core Pane
	Tools Pane
	Video Information
	Colormap for Intensity Video
	Status Bar

	System Object Reference
	Analysis & Enhancement
	Conversions
	Filtering
	Geometric Transformations
	Morphological Operations
	Sinks
	Sources
	Statistics
	Text & Graphics
	Transforms
	Utilities

	Alphabetical List
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties
	Fixed-Point Properties

	Function Reference
	Video and Image Processing Functions

	tables
	Floating-Point Signals
	Fixed-Point Signals
	Output = Individual statistics for each ROI
	Output = Single statistic for all ROIs
	Output = Individual statistics for each ROI
	Output = Single statistic for all ROIs
	Output = Individual statistics for each ROI
	Output = Single statistic for all ROIs
	Output = Individual statistics for each ROI
	Output = Single statistic for all ROIs
	Output = Individual Statistics for Each ROI
	Output = Single Statistic for All ROIs
	Output = Individual Statistics for Each ROI
	Output = Single Statistic for All ROIs
	Text Parameter Supported Conversion Specifications
	Location Parameter Text String Insertion
	Text String Color Values
	Text String Opacity Values
	Toolbar
	Playback Toolbar

